Sunil Gurrapu, K. Hodder, D. Sauchyn, Jeannine‐Marie St. Jacques
{"title":"标准化降水蒸发蒸腾指数(SPEI)模拟加拿大西部流域历史径流的能力评估","authors":"Sunil Gurrapu, K. Hodder, D. Sauchyn, Jeannine‐Marie St. Jacques","doi":"10.1080/07011784.2021.1896390","DOIUrl":null,"url":null,"abstract":"Abstract Knowledge of present-day spatial and temporal distribution of water resources is vital for successful water management and policies for planned adaptation to climate change. Measured quantities of hydroclimatic variables, including precipitation, evapotranspiration, streamflow, etc., are the primary indicators of water availability, and indices derived using several such primary variables provide a means to express water availability across a range of spatio-temporal scales. In this study, the ability of one such multi-scalar index, the Standardized Precipitation Evapotranspiration Index (SPEI), computed at a range of time scales, was examined to see how well it could model historically observed warm season monthly and annual streamflow in 24 natural-flowing watersheds of western Canada. The empirical relationships between the SPEI, computed at 1-, 3-, 6-, 9-, 12- and 24-month time scales, and monthly and annual streamflow were analyzed, showing significant correlations for all watersheds. The time scale of the SPEI with the strongest correlations varied seasonally. Based on these results, SPEI-based principal component regression (PCR) equations were calculated to model warm season monthly and annual historical streamflow. These PCR equations are able to adequately capture historical streamflow in these watersheds. Annual streamflow variability was better captured (mean = 0.46) than monthly variability (mean = 0.30 over March–October). Summer and fall streamflow variability was better captured (mean = 0.42 over June–September) than spring variability (mean = 0.15 over March–April).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2021.1896390","citationCount":"3","resultStr":"{\"title\":\"Assessment of the ability of the standardized precipitation evapotranspiration index (SPEI) to model historical streamflow in watersheds of Western Canada\",\"authors\":\"Sunil Gurrapu, K. Hodder, D. Sauchyn, Jeannine‐Marie St. Jacques\",\"doi\":\"10.1080/07011784.2021.1896390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Knowledge of present-day spatial and temporal distribution of water resources is vital for successful water management and policies for planned adaptation to climate change. Measured quantities of hydroclimatic variables, including precipitation, evapotranspiration, streamflow, etc., are the primary indicators of water availability, and indices derived using several such primary variables provide a means to express water availability across a range of spatio-temporal scales. In this study, the ability of one such multi-scalar index, the Standardized Precipitation Evapotranspiration Index (SPEI), computed at a range of time scales, was examined to see how well it could model historically observed warm season monthly and annual streamflow in 24 natural-flowing watersheds of western Canada. The empirical relationships between the SPEI, computed at 1-, 3-, 6-, 9-, 12- and 24-month time scales, and monthly and annual streamflow were analyzed, showing significant correlations for all watersheds. The time scale of the SPEI with the strongest correlations varied seasonally. Based on these results, SPEI-based principal component regression (PCR) equations were calculated to model warm season monthly and annual historical streamflow. These PCR equations are able to adequately capture historical streamflow in these watersheds. Annual streamflow variability was better captured (mean = 0.46) than monthly variability (mean = 0.30 over March–October). Summer and fall streamflow variability was better captured (mean = 0.42 over June–September) than spring variability (mean = 0.15 over March–April).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07011784.2021.1896390\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/07011784.2021.1896390\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2021.1896390","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of the ability of the standardized precipitation evapotranspiration index (SPEI) to model historical streamflow in watersheds of Western Canada
Abstract Knowledge of present-day spatial and temporal distribution of water resources is vital for successful water management and policies for planned adaptation to climate change. Measured quantities of hydroclimatic variables, including precipitation, evapotranspiration, streamflow, etc., are the primary indicators of water availability, and indices derived using several such primary variables provide a means to express water availability across a range of spatio-temporal scales. In this study, the ability of one such multi-scalar index, the Standardized Precipitation Evapotranspiration Index (SPEI), computed at a range of time scales, was examined to see how well it could model historically observed warm season monthly and annual streamflow in 24 natural-flowing watersheds of western Canada. The empirical relationships between the SPEI, computed at 1-, 3-, 6-, 9-, 12- and 24-month time scales, and monthly and annual streamflow were analyzed, showing significant correlations for all watersheds. The time scale of the SPEI with the strongest correlations varied seasonally. Based on these results, SPEI-based principal component regression (PCR) equations were calculated to model warm season monthly and annual historical streamflow. These PCR equations are able to adequately capture historical streamflow in these watersheds. Annual streamflow variability was better captured (mean = 0.46) than monthly variability (mean = 0.30 over March–October). Summer and fall streamflow variability was better captured (mean = 0.42 over June–September) than spring variability (mean = 0.15 over March–April).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.