{"title":"sam++:使用c++可移植性库移植E3SM-MMF云解析模型","authors":"Isaac Lyngaas, M. Norman, Youngsung Kim","doi":"10.1177/10943420211044495","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate the process for porting the cloud resolving model (CRM) used in the Energy Exascale Earth System Model Multi-Scale Modeling Framework (E3SM-MMF) from its original Fortran code base to C++ code using a portability library. This porting process is performed using the Yet Another Kernel Library (YAKL), a simplified C++ portability library that specializes in Fortran porting. In particular, we detail our step-by-step approach for porting the System for Atmospheric Modeling (SAM), the CRM used in E3SM-MMF, using a hybrid Fortran/C++ framework that allows for systematic reproduction and correctness testing of gradually ported YAKL C++ code. Additionally, analysis is done on the performance of the ported code using OLCF’s Summit supercomputer.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"214 - 230"},"PeriodicalIF":2.5000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SAM++: Porting the E3SM-MMF cloud resolving model using a C++ portability library\",\"authors\":\"Isaac Lyngaas, M. Norman, Youngsung Kim\",\"doi\":\"10.1177/10943420211044495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we demonstrate the process for porting the cloud resolving model (CRM) used in the Energy Exascale Earth System Model Multi-Scale Modeling Framework (E3SM-MMF) from its original Fortran code base to C++ code using a portability library. This porting process is performed using the Yet Another Kernel Library (YAKL), a simplified C++ portability library that specializes in Fortran porting. In particular, we detail our step-by-step approach for porting the System for Atmospheric Modeling (SAM), the CRM used in E3SM-MMF, using a hybrid Fortran/C++ framework that allows for systematic reproduction and correctness testing of gradually ported YAKL C++ code. Additionally, analysis is done on the performance of the ported code using OLCF’s Summit supercomputer.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"36 1\",\"pages\":\"214 - 230\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420211044495\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211044495","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
SAM++: Porting the E3SM-MMF cloud resolving model using a C++ portability library
In this work, we demonstrate the process for porting the cloud resolving model (CRM) used in the Energy Exascale Earth System Model Multi-Scale Modeling Framework (E3SM-MMF) from its original Fortran code base to C++ code using a portability library. This porting process is performed using the Yet Another Kernel Library (YAKL), a simplified C++ portability library that specializes in Fortran porting. In particular, we detail our step-by-step approach for porting the System for Atmospheric Modeling (SAM), the CRM used in E3SM-MMF, using a hybrid Fortran/C++ framework that allows for systematic reproduction and correctness testing of gradually ported YAKL C++ code. Additionally, analysis is done on the performance of the ported code using OLCF’s Summit supercomputer.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.