使用集成卡尔曼-布西滤波器的对数归一化常数估计及其在高维模型中的应用

Pub Date : 2021-01-27 DOI:10.1017/apr.2021.62
D. Crisan, P. Del Moral, A. Jasra, Hamza M. Ruzayqat
{"title":"使用集成卡尔曼-布西滤波器的对数归一化常数估计及其在高维模型中的应用","authors":"D. Crisan, P. Del Moral, A. Jasra, Hamza M. Ruzayqat","doi":"10.1017/apr.2021.62","DOIUrl":null,"url":null,"abstract":"Abstract In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman–Bucy filter estimates based upon several nonlinear Kalman–Bucy diffusions. Using new conditional bias results for the mean of the aforementioned methods, we analyze the empirical log-scale normalization constants in terms of their \n$\\mathbb{L}_n$\n -errors and \n$\\mathbb{L}_n$\n -conditional bias. Depending on the type of nonlinear Kalman–Bucy diffusion, we show that these are bounded above by terms such as \n$\\mathsf{C}(n)\\left[t^{1/2}/N^{1/2} + t/N\\right]$\n or \n$\\mathsf{C}(n)/N^{1/2}$\n ( \n$\\mathbb{L}_n$\n -errors) and \n$\\mathsf{C}(n)\\left[t+t^{1/2}\\right]/N$\n or \n$\\mathsf{C}(n)/N$\n ( \n$\\mathbb{L}_n$\n -conditional bias), where t is the time horizon, N is the ensemble size, and \n$\\mathsf{C}(n)$\n is a constant that depends only on n, not on N or t. Finally, we use these results for online static parameter estimation for the above filtering models and implement the methodology for both linear and nonlinear models.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Log-normalization constant estimation using the ensemble Kalman–Bucy filter with application to high-dimensional models\",\"authors\":\"D. Crisan, P. Del Moral, A. Jasra, Hamza M. Ruzayqat\",\"doi\":\"10.1017/apr.2021.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman–Bucy filter estimates based upon several nonlinear Kalman–Bucy diffusions. Using new conditional bias results for the mean of the aforementioned methods, we analyze the empirical log-scale normalization constants in terms of their \\n$\\\\mathbb{L}_n$\\n -errors and \\n$\\\\mathbb{L}_n$\\n -conditional bias. Depending on the type of nonlinear Kalman–Bucy diffusion, we show that these are bounded above by terms such as \\n$\\\\mathsf{C}(n)\\\\left[t^{1/2}/N^{1/2} + t/N\\\\right]$\\n or \\n$\\\\mathsf{C}(n)/N^{1/2}$\\n ( \\n$\\\\mathbb{L}_n$\\n -errors) and \\n$\\\\mathsf{C}(n)\\\\left[t+t^{1/2}\\\\right]/N$\\n or \\n$\\\\mathsf{C}(n)/N$\\n ( \\n$\\\\mathbb{L}_n$\\n -conditional bias), where t is the time horizon, N is the ensemble size, and \\n$\\\\mathsf{C}(n)$\\n is a constant that depends only on n, not on N or t. Finally, we use these results for online static parameter estimation for the above filtering models and implement the methodology for both linear and nonlinear models.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2021.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要在本文中,我们考虑与一类连续时间滤波模型相关的对数归一化常数的估计。特别地,我们考虑基于几个非线性卡尔曼-布西扩散的集合卡尔曼-布奇滤波器估计。使用上述方法平均值的新的条件偏差结果,我们分析了经验对数尺度归一化常数的$\mathbb{L}_n$-errors和$\mathbb{L}_n$-条件偏差。根据非线性Kalman–Bucy扩散的类型,我们证明了它们在上面由$\mathsf{C}(n)\left[t^{1/2}/n^{1/2}+t/n\right]$或$\mathsf{C}(n)/n^{1/2}$($\mathbb{L}_n$-errors)和$\mathsf{C}(n)\left[t+t^{1/2}\right]/n$或$\mathsf{C}(n)/n$($\mathbb{L}_n$-条件偏差),其中t是时间范围,N是系综大小,$\mathsf{C}(N)$是仅取决于N而不取决于N或t的常数。最后,我们将这些结果用于上述滤波模型的在线静态参数估计,并实现线性和非线性模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Log-normalization constant estimation using the ensemble Kalman–Bucy filter with application to high-dimensional models
Abstract In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman–Bucy filter estimates based upon several nonlinear Kalman–Bucy diffusions. Using new conditional bias results for the mean of the aforementioned methods, we analyze the empirical log-scale normalization constants in terms of their $\mathbb{L}_n$ -errors and $\mathbb{L}_n$ -conditional bias. Depending on the type of nonlinear Kalman–Bucy diffusion, we show that these are bounded above by terms such as $\mathsf{C}(n)\left[t^{1/2}/N^{1/2} + t/N\right]$ or $\mathsf{C}(n)/N^{1/2}$ ( $\mathbb{L}_n$ -errors) and $\mathsf{C}(n)\left[t+t^{1/2}\right]/N$ or $\mathsf{C}(n)/N$ ( $\mathbb{L}_n$ -conditional bias), where t is the time horizon, N is the ensemble size, and $\mathsf{C}(n)$ is a constant that depends only on n, not on N or t. Finally, we use these results for online static parameter estimation for the above filtering models and implement the methodology for both linear and nonlinear models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信