{"title":"非齐次线性形式的集合不能各向同性获胜","authors":"N. Dyakova","doi":"10.2140/moscow.2019.8.3","DOIUrl":null,"url":null,"abstract":"We give an example of irrational vector $\\pmb{\\theta} \\in \\mathbb{R}^2$ such that the set $Bad_{\\pmb{\\theta}} := \\{(\\eta_1,\\eta_2): \\inf_{x\\in\\mathbb{N}} x^{\\frac{1}{2}} \\max_{i=1,2} \\|x \\theta_i-\\eta_i\\|>0\\}$ is not absolutely winning with respect to McMullen's game.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.3","citationCount":"0","resultStr":"{\"title\":\"Sets of inhomogeneous linear forms can be not isotropically winning\",\"authors\":\"N. Dyakova\",\"doi\":\"10.2140/moscow.2019.8.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an example of irrational vector $\\\\pmb{\\\\theta} \\\\in \\\\mathbb{R}^2$ such that the set $Bad_{\\\\pmb{\\\\theta}} := \\\\{(\\\\eta_1,\\\\eta_2): \\\\inf_{x\\\\in\\\\mathbb{N}} x^{\\\\frac{1}{2}} \\\\max_{i=1,2} \\\\|x \\\\theta_i-\\\\eta_i\\\\|>0\\\\}$ is not absolutely winning with respect to McMullen's game.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Sets of inhomogeneous linear forms can be not isotropically winning
We give an example of irrational vector $\pmb{\theta} \in \mathbb{R}^2$ such that the set $Bad_{\pmb{\theta}} := \{(\eta_1,\eta_2): \inf_{x\in\mathbb{N}} x^{\frac{1}{2}} \max_{i=1,2} \|x \theta_i-\eta_i\|>0\}$ is not absolutely winning with respect to McMullen's game.