论仙人掌群的sch岑伯格模

Q3 Mathematics
Jongmin Lim, Oded Yacobi
{"title":"论仙人掌群的sch<s:1>岑伯格模","authors":"Jongmin Lim, Oded Yacobi","doi":"10.5802/alco.283","DOIUrl":null,"url":null,"abstract":"The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\\\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group\"Sch\\\"utzenberger modules\", denoted $S^\\lambda_{\\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\\lambda$ is a hook shape, the cactus group action on $S^\\lambda_{\\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Schützenberger modules of the cactus group\",\"authors\":\"Jongmin Lim, Oded Yacobi\",\"doi\":\"10.5802/alco.283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\\\\\\\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group\\\"Sch\\\\\\\"utzenberger modules\\\", denoted $S^\\\\lambda_{\\\\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\\\\lambda$ is a hook shape, the cactus group action on $S^\\\\lambda_{\\\\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

仙人掌群通过(部分)Sch\ \ utzenberger对合作用于给定形状的标准杨氏表集。通过将标准Young表与Kazhdan-Lusztig基础相识别,很自然地将这一动作扩展到相应的Specht模块。我们将仙人掌群的这些表示称为“Sch\”utzenberger模”,记为$S^\lambda_{\mathsf{Sch}}$,并研究了它们分解为不可约分量的问题。我们证明了当$\lambda$是一个钩形时,仙人掌群作用于$S^\lambda_{\mathsf{Sch}}$因子通过$S_{n-1}$以及由此产生的多重性用Kostka系数给出。我们的证明依赖于Berenstein、Kirillov、Chmutov、Glick和pylyavsky的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Schützenberger modules of the cactus group
The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group"Sch\"utzenberger modules", denoted $S^\lambda_{\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\lambda$ is a hook shape, the cactus group action on $S^\lambda_{\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信