{"title":"论仙人掌群的sch<s:1>岑伯格模","authors":"Jongmin Lim, Oded Yacobi","doi":"10.5802/alco.283","DOIUrl":null,"url":null,"abstract":"The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\\\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group\"Sch\\\"utzenberger modules\", denoted $S^\\lambda_{\\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\\lambda$ is a hook shape, the cactus group action on $S^\\lambda_{\\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Schützenberger modules of the cactus group\",\"authors\":\"Jongmin Lim, Oded Yacobi\",\"doi\":\"10.5802/alco.283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\\\\\\\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group\\\"Sch\\\\\\\"utzenberger modules\\\", denoted $S^\\\\lambda_{\\\\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\\\\lambda$ is a hook shape, the cactus group action on $S^\\\\lambda_{\\\\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group"Sch\"utzenberger modules", denoted $S^\lambda_{\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\lambda$ is a hook shape, the cactus group action on $S^\lambda_{\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.