关于除数函数的几个猜想

Masatoshi Nakano
{"title":"关于除数函数的几个猜想","authors":"Masatoshi Nakano","doi":"10.17265/2159-5291/2020.02.002","DOIUrl":null,"url":null,"abstract":": We propose the following conjecture on ( ) n σ the sum-of-divisors function: log( n σ− will increase strictly and converge to 1 when n runs from the colossally abundant numbers to infinity. This conjecture is a sufficient condition for the Riemann hypothesis by Robin’s theorem, and it is confirmed for n from 4 10 up to 103078 10 . Further, we present two additional conjectures that are related to Robin’s theorem.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Conjectures on the Divisor Function\",\"authors\":\"Masatoshi Nakano\",\"doi\":\"10.17265/2159-5291/2020.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We propose the following conjecture on ( ) n σ the sum-of-divisors function: log( n σ− will increase strictly and converge to 1 when n runs from the colossally abundant numbers to infinity. This conjecture is a sufficient condition for the Riemann hypothesis by Robin’s theorem, and it is confirmed for n from 4 10 up to 103078 10 . Further, we present two additional conjectures that are related to Robin’s theorem.\",\"PeriodicalId\":61124,\"journal\":{\"name\":\"数学和系统科学:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学和系统科学:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/2159-5291/2020.02.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2020.02.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:我们对()nσ除数函数之和提出如下猜想:log(nσ−将严格增加,并在n从无穷多到无穷大时收敛到1。这个猜想是由Robin定理证明Riemann假设的一个充分条件,并且它在n从4 10到103078 10之间得到了证实。此外,我们还提出了两个与Robin定理有关的附加猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Conjectures on the Divisor Function
: We propose the following conjecture on ( ) n σ the sum-of-divisors function: log( n σ− will increase strictly and converge to 1 when n runs from the colossally abundant numbers to infinity. This conjecture is a sufficient condition for the Riemann hypothesis by Robin’s theorem, and it is confirmed for n from 4 10 up to 103078 10 . Further, we present two additional conjectures that are related to Robin’s theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
450
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信