{"title":"一类多项式微分方程的不变有理曲线","authors":"H. Díaz-Marín, O. Osuna","doi":"10.15446/recolma.v56n1.105621","DOIUrl":null,"url":null,"abstract":"In this work, we present sufficient conditions to determine if the limit cycles of certain differential systems in the plane are algebraic or not. In particular, we obtain criteria such that the limit cycles of equations derived from predatory prey models with rational functional response are necessarily transcendental ovals.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the invariant rational curves of a certain family of polynomial differential equations\",\"authors\":\"H. Díaz-Marín, O. Osuna\",\"doi\":\"10.15446/recolma.v56n1.105621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present sufficient conditions to determine if the limit cycles of certain differential systems in the plane are algebraic or not. In particular, we obtain criteria such that the limit cycles of equations derived from predatory prey models with rational functional response are necessarily transcendental ovals.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v56n1.105621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v56n1.105621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On the invariant rational curves of a certain family of polynomial differential equations
In this work, we present sufficient conditions to determine if the limit cycles of certain differential systems in the plane are algebraic or not. In particular, we obtain criteria such that the limit cycles of equations derived from predatory prey models with rational functional response are necessarily transcendental ovals.