死区过程控制:从史密斯预测器到一般多输入多输出死区补偿器

J. Normey-Rico, T. Santos, R. Flesch, B. C. Torrico
{"title":"死区过程控制:从史密斯预测器到一般多输入多输出死区补偿器","authors":"J. Normey-Rico, T. Santos, R. Flesch, B. C. Torrico","doi":"10.3389/fcteg.2022.953768","DOIUrl":null,"url":null,"abstract":"This review paper deals with the analysis, design, and tuning of dead-time compensators for stable and unstable multi-input multi-output (MIMO) processes with multiple time delays. It is well known that, even in the single-input single-output case, processes with significant dead times are difficult to control using standard feedback controllers. For MIMO systems, the study of processes with dead time is more involved, particularly when the process behavior exhibits different dead times in the different input-output relationships. Because of this, much research has been conducted in the last 50 years on this subject, with different approaches and proposals of controllers for covering a variety of objectives. Thus, this paper gives an overview of this important topic, focusing on the solutions derived from the Smith Predictor. First, a historical perspective of the different controllers proposed in the literature is presented. Then, the general solution of the problem is developed, paying particular attention to robustness and disturbance rejection properties, because of their importance and usefulness in industrial processes. All the development is done in the discrete-time case, which allows direct digital implementation. Two simulation case studies are presented to illustrate some of the ideas discussed in the paper, and an experimental case study is used to discuss aspects of practical implementation.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Control of dead-time process: From the Smith predictor to general multi-input multi-output dead-time compensators\",\"authors\":\"J. Normey-Rico, T. Santos, R. Flesch, B. C. Torrico\",\"doi\":\"10.3389/fcteg.2022.953768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper deals with the analysis, design, and tuning of dead-time compensators for stable and unstable multi-input multi-output (MIMO) processes with multiple time delays. It is well known that, even in the single-input single-output case, processes with significant dead times are difficult to control using standard feedback controllers. For MIMO systems, the study of processes with dead time is more involved, particularly when the process behavior exhibits different dead times in the different input-output relationships. Because of this, much research has been conducted in the last 50 years on this subject, with different approaches and proposals of controllers for covering a variety of objectives. Thus, this paper gives an overview of this important topic, focusing on the solutions derived from the Smith Predictor. First, a historical perspective of the different controllers proposed in the literature is presented. Then, the general solution of the problem is developed, paying particular attention to robustness and disturbance rejection properties, because of their importance and usefulness in industrial processes. All the development is done in the discrete-time case, which allows direct digital implementation. Two simulation case studies are presented to illustrate some of the ideas discussed in the paper, and an experimental case study is used to discuss aspects of practical implementation.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2022.953768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2022.953768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了具有多个时间延迟的稳定和不稳定多输入多输出(MIMO)过程的死区补偿器的分析、设计和调谐。众所周知,即使在单输入单输出的情况下,使用标准反馈控制器也很难控制具有显著停滞时间的过程。对于MIMO系统,研究具有死区时间的过程更为重要,尤其是当过程行为在不同的输入输出关系中表现出不同的死区时间时。正因为如此,在过去的50年里,人们对这一主题进行了大量的研究,控制器的不同方法和建议涵盖了各种目标。因此,本文对这一重要主题进行了概述,重点介绍了Smith预测器的求解方法。首先,介绍了文献中提出的不同控制器的历史观点。然后,由于其在工业过程中的重要性和实用性,开发了该问题的一般解决方案,特别注意鲁棒性和抗干扰特性。所有的开发都是在离散时间的情况下完成的,这允许直接的数字实现。通过两个模拟案例来说明本文中讨论的一些想法,并通过一个实验案例来讨论实际实现的各个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of dead-time process: From the Smith predictor to general multi-input multi-output dead-time compensators
This review paper deals with the analysis, design, and tuning of dead-time compensators for stable and unstable multi-input multi-output (MIMO) processes with multiple time delays. It is well known that, even in the single-input single-output case, processes with significant dead times are difficult to control using standard feedback controllers. For MIMO systems, the study of processes with dead time is more involved, particularly when the process behavior exhibits different dead times in the different input-output relationships. Because of this, much research has been conducted in the last 50 years on this subject, with different approaches and proposals of controllers for covering a variety of objectives. Thus, this paper gives an overview of this important topic, focusing on the solutions derived from the Smith Predictor. First, a historical perspective of the different controllers proposed in the literature is presented. Then, the general solution of the problem is developed, paying particular attention to robustness and disturbance rejection properties, because of their importance and usefulness in industrial processes. All the development is done in the discrete-time case, which allows direct digital implementation. Two simulation case studies are presented to illustrate some of the ideas discussed in the paper, and an experimental case study is used to discuss aspects of practical implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信