关于循环分形插值函数的一些结果

Wadia Faid Hassan Al-shameri
{"title":"关于循环分形插值函数的一些结果","authors":"Wadia Faid Hassan Al-shameri","doi":"10.1166/NNL.2020.3198","DOIUrl":null,"url":null,"abstract":"Barnsley (Barnsley, M.F., 1986. Fractal functions and interpolation. Constr. Approx., 2, pp.303–329) introduced fractal interpolation function (FIF) whose graph is the attractor of an iterated function system (IFS) for describing the data that have an irregular or self-similar\n structure. Barnsley et al. (Barnsley, M.F., et al., 1989. Recurrent iterated function systems in fractal approximation. Constr. Approx., 5, pp.3–31) generalized FIF in the form of recurrent fractal interpolation function (RFIF) whose graph is the attractor of a recurrent iterated\n function system (RIFS) to fit data set which is piece-wise self-affine. The primary aim of the present research is investigating the RFIF approach and using it for fitting the piece-wise self-affine data set in ℜ2.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"1038-1043"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Results on Recurrent Fractal Interpolation Function\",\"authors\":\"Wadia Faid Hassan Al-shameri\",\"doi\":\"10.1166/NNL.2020.3198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Barnsley (Barnsley, M.F., 1986. Fractal functions and interpolation. Constr. Approx., 2, pp.303–329) introduced fractal interpolation function (FIF) whose graph is the attractor of an iterated function system (IFS) for describing the data that have an irregular or self-similar\\n structure. Barnsley et al. (Barnsley, M.F., et al., 1989. Recurrent iterated function systems in fractal approximation. Constr. Approx., 5, pp.3–31) generalized FIF in the form of recurrent fractal interpolation function (RFIF) whose graph is the attractor of a recurrent iterated\\n function system (RIFS) to fit data set which is piece-wise self-affine. The primary aim of the present research is investigating the RFIF approach and using it for fitting the piece-wise self-affine data set in ℜ2.\",\"PeriodicalId\":18871,\"journal\":{\"name\":\"Nanoscience and Nanotechnology Letters\",\"volume\":\"12 1\",\"pages\":\"1038-1043\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/NNL.2020.3198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

巴恩斯利(巴恩斯利,M.F.,1986年。分形函数和插值。施工。大约,2,第303–329页)引入了分形插值函数(FIF),其图是迭代函数系统(IFS)的吸引子,用于描述具有不规则或自相似结构的数据。Barnsley等人(Barnsley,M.F.等人,1989年。分形近似中的递归迭代函数系统。施工。大约,5,pp.3-31)递归分形插值函数(RFIF)形式的广义FIF,其图是递归迭代函数系统(RIFS)的吸引子,以拟合分段自仿射的数据集。本研究的主要目的是研究RFIF方法,并将其用于拟合中的分段自仿射数据集ℜ2.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results on Recurrent Fractal Interpolation Function
Barnsley (Barnsley, M.F., 1986. Fractal functions and interpolation. Constr. Approx., 2, pp.303–329) introduced fractal interpolation function (FIF) whose graph is the attractor of an iterated function system (IFS) for describing the data that have an irregular or self-similar structure. Barnsley et al. (Barnsley, M.F., et al., 1989. Recurrent iterated function systems in fractal approximation. Constr. Approx., 5, pp.3–31) generalized FIF in the form of recurrent fractal interpolation function (RFIF) whose graph is the attractor of a recurrent iterated function system (RIFS) to fit data set which is piece-wise self-affine. The primary aim of the present research is investigating the RFIF approach and using it for fitting the piece-wise self-affine data set in ℜ2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscience and Nanotechnology Letters
Nanoscience and Nanotechnology Letters Physical, Chemical & Earth Sciences-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
审稿时长
2.6 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信