Maria-Cristina Necula, Iris Tusa, M. Sidoroff, C. Itcus, D. Florea, Alexandru Amarioarei, Andrei Păun, O. Pacioglu, M. M. Păun
{"title":"基于遥感的多瑙河三角洲(罗马尼亚)水物理化学参数估计的准确性如何?","authors":"Maria-Cristina Necula, Iris Tusa, M. Sidoroff, C. Itcus, D. Florea, Alexandru Amarioarei, Andrei Păun, O. Pacioglu, M. M. Păun","doi":"10.15287/afr.2022.2682","DOIUrl":null,"url":null,"abstract":"The current paper estimated the physico-chemical properties of water in the Danube Delta (Romania), based on Sentinel 2 remote sensing data. Eleven sites from the Danube Delta were sampled in spring and autumn for three years (2018-2020) and 21 water physico-chemical parameters were measured in laboratory. Several families of machine learning algorithms, translated into hundreds of models with different parameterizations for each machine learning algorithm, based on remote sensing data input from Sentinel 2 spectral bands, were employed to find the best models that predicted the values measured in laboratory. This was a novel approach, reflected in the types of selected models that minimised the values of performance metrics for the tested parameters. For alkalinity, calcium, chloride, carbon dioxide, hardness, potassium, sodium, ammonium, dissolved oxygen, sulphates, and suspended matter the results were promising, with an overall percentage bias of the estimates of +/- 10% from the observed values. For copper, magnesium, nitrites, nitrates, turbidity and zinc the estimates were fairly accurate, with percentage biases in the interval +/- 10% - 20%, whereas for detergents, led, and phosphates the percentage bias was higher than 20%. Overall, the results of the current study showed fairly good estimates between remote sensing based estimates and laboratory measured values for most water physico-chemical parameters.","PeriodicalId":48954,"journal":{"name":"Annals of Forest Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How accurate is the remote sensing based estimate of water physico-chemical parameters in the Danube Delta (Romania)?\",\"authors\":\"Maria-Cristina Necula, Iris Tusa, M. Sidoroff, C. Itcus, D. Florea, Alexandru Amarioarei, Andrei Păun, O. Pacioglu, M. M. Păun\",\"doi\":\"10.15287/afr.2022.2682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current paper estimated the physico-chemical properties of water in the Danube Delta (Romania), based on Sentinel 2 remote sensing data. Eleven sites from the Danube Delta were sampled in spring and autumn for three years (2018-2020) and 21 water physico-chemical parameters were measured in laboratory. Several families of machine learning algorithms, translated into hundreds of models with different parameterizations for each machine learning algorithm, based on remote sensing data input from Sentinel 2 spectral bands, were employed to find the best models that predicted the values measured in laboratory. This was a novel approach, reflected in the types of selected models that minimised the values of performance metrics for the tested parameters. For alkalinity, calcium, chloride, carbon dioxide, hardness, potassium, sodium, ammonium, dissolved oxygen, sulphates, and suspended matter the results were promising, with an overall percentage bias of the estimates of +/- 10% from the observed values. For copper, magnesium, nitrites, nitrates, turbidity and zinc the estimates were fairly accurate, with percentage biases in the interval +/- 10% - 20%, whereas for detergents, led, and phosphates the percentage bias was higher than 20%. Overall, the results of the current study showed fairly good estimates between remote sensing based estimates and laboratory measured values for most water physico-chemical parameters.\",\"PeriodicalId\":48954,\"journal\":{\"name\":\"Annals of Forest Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15287/afr.2022.2682\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15287/afr.2022.2682","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
How accurate is the remote sensing based estimate of water physico-chemical parameters in the Danube Delta (Romania)?
The current paper estimated the physico-chemical properties of water in the Danube Delta (Romania), based on Sentinel 2 remote sensing data. Eleven sites from the Danube Delta were sampled in spring and autumn for three years (2018-2020) and 21 water physico-chemical parameters were measured in laboratory. Several families of machine learning algorithms, translated into hundreds of models with different parameterizations for each machine learning algorithm, based on remote sensing data input from Sentinel 2 spectral bands, were employed to find the best models that predicted the values measured in laboratory. This was a novel approach, reflected in the types of selected models that minimised the values of performance metrics for the tested parameters. For alkalinity, calcium, chloride, carbon dioxide, hardness, potassium, sodium, ammonium, dissolved oxygen, sulphates, and suspended matter the results were promising, with an overall percentage bias of the estimates of +/- 10% from the observed values. For copper, magnesium, nitrites, nitrates, turbidity and zinc the estimates were fairly accurate, with percentage biases in the interval +/- 10% - 20%, whereas for detergents, led, and phosphates the percentage bias was higher than 20%. Overall, the results of the current study showed fairly good estimates between remote sensing based estimates and laboratory measured values for most water physico-chemical parameters.
期刊介绍:
Annals of Forest Research is a semestrial open access journal, which publishes research articles, research notes and critical review papers, exclusively in English, on topics dealing with forestry and environmental sciences. The journal promotes high scientific level articles, by following international editorial conventions and by applying a peer-review selection process.