的辛实现上的可积哈密顿系统 \(\textbf{e}(3)^*\)

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
A. Odzijewicz, E. Wawreniuk
{"title":"的辛实现上的可积哈密顿系统 \\(\\textbf{e}(3)^*\\)","authors":"A. Odzijewicz,&nbsp;E. Wawreniuk","doi":"10.1134/S1061920822010095","DOIUrl":null,"url":null,"abstract":"<p> The phase space of a gyrostat with a fixed point and a heavy top is the Lie–Poisson space <span>\\(\\textbf{e}(3)^*\\cong \\mathbb{R}^3\\times \\mathbb{R}^3\\)</span> dual to the Lie algebra <span>\\(\\textbf{e}(3)\\)</span> of the Euclidean group <span>\\(E(3)\\)</span>. One has three naturally distinguished Poisson submanifolds of <span>\\(\\textbf{e}(3)^*\\)</span>: (i) the dense open submanifold <span>\\(\\mathbb{R}^3\\times \\dot{\\mathbb{R}}^3\\subset \\textbf{e}(3)^*\\)</span> which consists of all <span>\\(4\\)</span>-dimensional symplectic leaves (<span>\\(\\vec{\\Gamma}^2&gt;0\\)</span>); (ii) the <span>\\(5\\)</span>-dimensional Poisson submanifold of <span>\\(\\mathbb{R}^3\\times \\dot{\\mathbb{R}}^3\\)</span> defined by <span>\\(\\vec{J}\\cdot \\vec{\\Gamma} = \\mu ||\\vec{\\Gamma}||\\)</span>; (iii) the <span>\\(5\\)</span>-dimensional Poisson submanifold of <span>\\(\\mathbb{R}^3\\times \\dot{\\mathbb{R}}^3\\)</span> defined by <span>\\(\\vec{\\Gamma}^2 = \\nu^2\\)</span>, where <span>\\(\\dot{\\mathbb{R}}^3:= \\mathbb{R}^3\\backslash \\{0\\}\\)</span>, <span>\\((\\vec{J}, \\vec{\\Gamma})\\in \\mathbb{R}^3\\times \\mathbb{R}^3\\cong \\textbf{e}(3)^*\\)</span> and <span>\\(\\nu &lt; 0 \\)</span>, <span>\\(\\mu\\)</span> are some fixed real parameters. Using the <span>\\(U(2,2)\\)</span>-invariant symplectic structure of Penrose twistor space we find full and complete <span>\\(E(3)\\)</span>-equivariant symplectic realizations of these Poisson submanifolds which are <span>\\(8\\)</span>-dimensional for (i) and <span>\\(6\\)</span>-dimensional for (ii) and (iii). As a consequence of the above, Hamiltonian systems on <span>\\(\\textbf{e}(3)^*\\)</span> lift to Hamiltonian systems on the above symplectic realizations. In this way, after lifting the integrable cases of a gyrostat with a fixed point and of a heavy top, we obtain a large family of integrable Hamiltonian systems on the phase spaces defined by these symplectic realizations. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"29 1","pages":"91 - 114"},"PeriodicalIF":1.7000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrable Hamiltonian Systems on the Symplectic Realizations of \\\\(\\\\textbf{e}(3)^*\\\\)\",\"authors\":\"A. Odzijewicz,&nbsp;E. Wawreniuk\",\"doi\":\"10.1134/S1061920822010095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The phase space of a gyrostat with a fixed point and a heavy top is the Lie–Poisson space <span>\\\\(\\\\textbf{e}(3)^*\\\\cong \\\\mathbb{R}^3\\\\times \\\\mathbb{R}^3\\\\)</span> dual to the Lie algebra <span>\\\\(\\\\textbf{e}(3)\\\\)</span> of the Euclidean group <span>\\\\(E(3)\\\\)</span>. One has three naturally distinguished Poisson submanifolds of <span>\\\\(\\\\textbf{e}(3)^*\\\\)</span>: (i) the dense open submanifold <span>\\\\(\\\\mathbb{R}^3\\\\times \\\\dot{\\\\mathbb{R}}^3\\\\subset \\\\textbf{e}(3)^*\\\\)</span> which consists of all <span>\\\\(4\\\\)</span>-dimensional symplectic leaves (<span>\\\\(\\\\vec{\\\\Gamma}^2&gt;0\\\\)</span>); (ii) the <span>\\\\(5\\\\)</span>-dimensional Poisson submanifold of <span>\\\\(\\\\mathbb{R}^3\\\\times \\\\dot{\\\\mathbb{R}}^3\\\\)</span> defined by <span>\\\\(\\\\vec{J}\\\\cdot \\\\vec{\\\\Gamma} = \\\\mu ||\\\\vec{\\\\Gamma}||\\\\)</span>; (iii) the <span>\\\\(5\\\\)</span>-dimensional Poisson submanifold of <span>\\\\(\\\\mathbb{R}^3\\\\times \\\\dot{\\\\mathbb{R}}^3\\\\)</span> defined by <span>\\\\(\\\\vec{\\\\Gamma}^2 = \\\\nu^2\\\\)</span>, where <span>\\\\(\\\\dot{\\\\mathbb{R}}^3:= \\\\mathbb{R}^3\\\\backslash \\\\{0\\\\}\\\\)</span>, <span>\\\\((\\\\vec{J}, \\\\vec{\\\\Gamma})\\\\in \\\\mathbb{R}^3\\\\times \\\\mathbb{R}^3\\\\cong \\\\textbf{e}(3)^*\\\\)</span> and <span>\\\\(\\\\nu &lt; 0 \\\\)</span>, <span>\\\\(\\\\mu\\\\)</span> are some fixed real parameters. Using the <span>\\\\(U(2,2)\\\\)</span>-invariant symplectic structure of Penrose twistor space we find full and complete <span>\\\\(E(3)\\\\)</span>-equivariant symplectic realizations of these Poisson submanifolds which are <span>\\\\(8\\\\)</span>-dimensional for (i) and <span>\\\\(6\\\\)</span>-dimensional for (ii) and (iii). As a consequence of the above, Hamiltonian systems on <span>\\\\(\\\\textbf{e}(3)^*\\\\)</span> lift to Hamiltonian systems on the above symplectic realizations. In this way, after lifting the integrable cases of a gyrostat with a fixed point and of a heavy top, we obtain a large family of integrable Hamiltonian systems on the phase spaces defined by these symplectic realizations. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"29 1\",\"pages\":\"91 - 114\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920822010095\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920822010095","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

固定点重顶陀螺的相空间是与欧几里得群的李代数\(\textbf{e}(3)\)对偶的Lie - poisson空间\(\textbf{e}(3)^*\cong \mathbb{R}^3\times \mathbb{R}^3\)\(E(3)\)。我们有三个自然区分的\(\textbf{e}(3)^*\)的泊松子流形:(i)由所有\(4\)维辛叶组成的稠密开放子流形\(\mathbb{R}^3\times \dot{\mathbb{R}}^3\subset \textbf{e}(3)^*\) (\(\vec{\Gamma}^2>0\));(ii)由\(\vec{J}\cdot \vec{\Gamma} = \mu ||\vec{\Gamma}||\)定义的\(\mathbb{R}^3\times \dot{\mathbb{R}}^3\)的\(5\)维泊松子流形;(iii)由\(\vec{\Gamma}^2 = \nu^2\)定义的\(\mathbb{R}^3\times \dot{\mathbb{R}}^3\)的\(5\)维泊松子流形,其中\(\dot{\mathbb{R}}^3:= \mathbb{R}^3\backslash \{0\}\)、\((\vec{J}, \vec{\Gamma})\in \mathbb{R}^3\times \mathbb{R}^3\cong \textbf{e}(3)^*\)和\(\nu < 0 \)、\(\mu\)为固定实参数。利用Penrose twistor空间的\(U(2,2)\)不变辛结构,我们找到了这些泊松子流形的完整的\(E(3)\)等变辛实现,它们对于(i)是\(8\)维的,对于(ii)和(iii)是\(6\)维的。由于上述的结果,\(\textbf{e}(3)^*\)上的哈密顿系统提升到上述辛实现上的哈密顿系统。这样,在提出带不动点的陀螺和重顶陀螺的可积情况后,我们在由这些辛实现所定义的相空间上得到了一大族的可积哈密顿系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable Hamiltonian Systems on the Symplectic Realizations of \(\textbf{e}(3)^*\)

The phase space of a gyrostat with a fixed point and a heavy top is the Lie–Poisson space \(\textbf{e}(3)^*\cong \mathbb{R}^3\times \mathbb{R}^3\) dual to the Lie algebra \(\textbf{e}(3)\) of the Euclidean group \(E(3)\). One has three naturally distinguished Poisson submanifolds of \(\textbf{e}(3)^*\): (i) the dense open submanifold \(\mathbb{R}^3\times \dot{\mathbb{R}}^3\subset \textbf{e}(3)^*\) which consists of all \(4\)-dimensional symplectic leaves (\(\vec{\Gamma}^2>0\)); (ii) the \(5\)-dimensional Poisson submanifold of \(\mathbb{R}^3\times \dot{\mathbb{R}}^3\) defined by \(\vec{J}\cdot \vec{\Gamma} = \mu ||\vec{\Gamma}||\); (iii) the \(5\)-dimensional Poisson submanifold of \(\mathbb{R}^3\times \dot{\mathbb{R}}^3\) defined by \(\vec{\Gamma}^2 = \nu^2\), where \(\dot{\mathbb{R}}^3:= \mathbb{R}^3\backslash \{0\}\), \((\vec{J}, \vec{\Gamma})\in \mathbb{R}^3\times \mathbb{R}^3\cong \textbf{e}(3)^*\) and \(\nu < 0 \), \(\mu\) are some fixed real parameters. Using the \(U(2,2)\)-invariant symplectic structure of Penrose twistor space we find full and complete \(E(3)\)-equivariant symplectic realizations of these Poisson submanifolds which are \(8\)-dimensional for (i) and \(6\)-dimensional for (ii) and (iii). As a consequence of the above, Hamiltonian systems on \(\textbf{e}(3)^*\) lift to Hamiltonian systems on the above symplectic realizations. In this way, after lifting the integrable cases of a gyrostat with a fixed point and of a heavy top, we obtain a large family of integrable Hamiltonian systems on the phase spaces defined by these symplectic realizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信