一类偏微分算子系统的调和分析与积分变换

IF 0.4 Q4 MATHEMATICS
Nawel Alaya , Moncef Dziri
{"title":"一类偏微分算子系统的调和分析与积分变换","authors":"Nawel Alaya ,&nbsp;Moncef Dziri","doi":"10.1016/j.trmi.2017.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we consider a generalized system of partial differential operators, we define the related Fourier transform and establish some harmonic analysis results. We also investigate a wide class of integral transforms of Riemann–Liouville type. In particular we give a good estimate of these integrals kernels, inversion formula and a Plancherel theorem for the dual.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 2","pages":"Pages 111-130"},"PeriodicalIF":0.4000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.01.001","citationCount":"0","resultStr":"{\"title\":\"Harmonic analysis and integral transforms associated with a class of a system of partial differential operators\",\"authors\":\"Nawel Alaya ,&nbsp;Moncef Dziri\",\"doi\":\"10.1016/j.trmi.2017.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we consider a generalized system of partial differential operators, we define the related Fourier transform and establish some harmonic analysis results. We also investigate a wide class of integral transforms of Riemann–Liouville type. In particular we give a good estimate of these integrals kernels, inversion formula and a Plancherel theorem for the dual.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 2\",\"pages\":\"Pages 111-130\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.01.001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S234680921630040X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S234680921630040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑一个广义的偏微分算子系统,定义了相关的傅里叶变换,并建立了一些谐波分析结果。我们还研究了一类广泛的Riemann-Liouville型的积分变换。特别地,我们给出了这些积分的核值,反演公式和对偶的Plancherel定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic analysis and integral transforms associated with a class of a system of partial differential operators

In this work, we consider a generalized system of partial differential operators, we define the related Fourier transform and establish some harmonic analysis results. We also investigate a wide class of integral transforms of Riemann–Liouville type. In particular we give a good estimate of these integrals kernels, inversion formula and a Plancherel theorem for the dual.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信