嵌入图的Tutte多项式的不可约性

Q3 Mathematics
Joanna A. Ellis-Monaghan, A. Goodall, I. Moffatt, S. Noble, Lluís Vena
{"title":"嵌入图的Tutte多项式的不可约性","authors":"Joanna A. Ellis-Monaghan, A. Goodall, I. Moffatt, S. Noble, Lluís Vena","doi":"10.5802/alco.252","DOIUrl":null,"url":null,"abstract":"We prove that the ribbon graph polynomial of a graph embedded in an orientable surface is irreducible if and only if the embedded graph is neither the disjoint union nor the join of embedded graphs. This result is analogous to the fact that the Tutte polynomial of a graph is irreducible if and only if the graph is connected and non-separable.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Irreducibility of the Tutte polynomial of an embedded graph\",\"authors\":\"Joanna A. Ellis-Monaghan, A. Goodall, I. Moffatt, S. Noble, Lluís Vena\",\"doi\":\"10.5802/alco.252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the ribbon graph polynomial of a graph embedded in an orientable surface is irreducible if and only if the embedded graph is neither the disjoint union nor the join of embedded graphs. This result is analogous to the fact that the Tutte polynomial of a graph is irreducible if and only if the graph is connected and non-separable.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了嵌入在可定向曲面中的图的带状图多项式是不可约的,当且仅当嵌入图既不是嵌入图的不相交并集也不是其连接。这个结果类似于图的Tutte多项式是不可约的,当且仅当图是连通的且不可分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreducibility of the Tutte polynomial of an embedded graph
We prove that the ribbon graph polynomial of a graph embedded in an orientable surface is irreducible if and only if the embedded graph is neither the disjoint union nor the join of embedded graphs. This result is analogous to the fact that the Tutte polynomial of a graph is irreducible if and only if the graph is connected and non-separable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信