{"title":"动物化学通讯的进化:来自非模式物种和系统发育比较方法的见解","authors":"S. Baeckens","doi":"10.26496/BJZ.2019.31","DOIUrl":null,"url":null,"abstract":"Chemical communication is probably the oldest, most ubiquitous form of information exchange in the natural world, spanning all three domains of life. While excellent sociobiological and behavioral ecological research has been conducted on the form and function of chemical signals in animals, we still know remarkably little on their evolution. Besides, much of our understanding of chemical signal diversity is restricted to insects, since studies on chemical communication in vertebrates are relatively scarce. In this review, I introduce the key concepts of animal communication and expand on the past, present, and future of research in chemical communication. When doing so, I highlight the current gaps in our knowledge on the evolution of the chemical communication system in animals, whilst emphasizing the heavy research bias towards lepidopterans. Here, I detail the benefits of using phylogenetic comparative methods to identify the motors and brakes that guide the evolution of chemical signals and chemical sensory systems. Moreover, I point out that focusing on non-model species in chemical ecology, specifically lizards, can provide valuable insights into how vertebrate chemical signals evolve, and how biological systems responsible for sending and receiving signals co-evolve with signal design. Lastly, I present a case study on lacertid lizards, demonstrating the possibilities of the phylogenetic comparative approach and the use of non-model species to study the evolution of animal chemical communication systems.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Evolution of animal chemical communication: Insights from non-model species and phylogenetic comparative methods\",\"authors\":\"S. Baeckens\",\"doi\":\"10.26496/BJZ.2019.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical communication is probably the oldest, most ubiquitous form of information exchange in the natural world, spanning all three domains of life. While excellent sociobiological and behavioral ecological research has been conducted on the form and function of chemical signals in animals, we still know remarkably little on their evolution. Besides, much of our understanding of chemical signal diversity is restricted to insects, since studies on chemical communication in vertebrates are relatively scarce. In this review, I introduce the key concepts of animal communication and expand on the past, present, and future of research in chemical communication. When doing so, I highlight the current gaps in our knowledge on the evolution of the chemical communication system in animals, whilst emphasizing the heavy research bias towards lepidopterans. Here, I detail the benefits of using phylogenetic comparative methods to identify the motors and brakes that guide the evolution of chemical signals and chemical sensory systems. Moreover, I point out that focusing on non-model species in chemical ecology, specifically lizards, can provide valuable insights into how vertebrate chemical signals evolve, and how biological systems responsible for sending and receiving signals co-evolve with signal design. Lastly, I present a case study on lacertid lizards, demonstrating the possibilities of the phylogenetic comparative approach and the use of non-model species to study the evolution of animal chemical communication systems.\",\"PeriodicalId\":8750,\"journal\":{\"name\":\"Belgian Journal of Zoology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Belgian Journal of Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26496/BJZ.2019.31\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Belgian Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26496/BJZ.2019.31","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Evolution of animal chemical communication: Insights from non-model species and phylogenetic comparative methods
Chemical communication is probably the oldest, most ubiquitous form of information exchange in the natural world, spanning all three domains of life. While excellent sociobiological and behavioral ecological research has been conducted on the form and function of chemical signals in animals, we still know remarkably little on their evolution. Besides, much of our understanding of chemical signal diversity is restricted to insects, since studies on chemical communication in vertebrates are relatively scarce. In this review, I introduce the key concepts of animal communication and expand on the past, present, and future of research in chemical communication. When doing so, I highlight the current gaps in our knowledge on the evolution of the chemical communication system in animals, whilst emphasizing the heavy research bias towards lepidopterans. Here, I detail the benefits of using phylogenetic comparative methods to identify the motors and brakes that guide the evolution of chemical signals and chemical sensory systems. Moreover, I point out that focusing on non-model species in chemical ecology, specifically lizards, can provide valuable insights into how vertebrate chemical signals evolve, and how biological systems responsible for sending and receiving signals co-evolve with signal design. Lastly, I present a case study on lacertid lizards, demonstrating the possibilities of the phylogenetic comparative approach and the use of non-model species to study the evolution of animal chemical communication systems.
期刊介绍:
The Belgian Journal of Zoology is an open access journal publishing high-quality research papers in English that are original, of broad interest and hypothesis-driven. Manuscripts on all aspects of zoology are considered, including anatomy, behaviour, developmental biology, ecology, evolution, genetics, genomics and physiology. Manuscripts on veterinary topics are outside of the journal’s scope. The Belgian Journal of Zoology also welcomes reviews, especially from complex or poorly understood research fields in zoology. The Belgian Journal of Zoology does no longer publish purely taxonomic papers. Surveys and reports on novel or invasive animal species for Belgium are considered only if sufficient new biological or biogeographic information is included.