交替周期静电场和交换场对石墨烯超晶格中狄拉克锥自旋相关各向异性的电操纵

IF 1.9 Q3 PHYSICS, CONDENSED MATTER
Pattana Somroob, W. Liewrian
{"title":"交替周期静电场和交换场对石墨烯超晶格中狄拉克锥自旋相关各向异性的电操纵","authors":"Pattana Somroob, W. Liewrian","doi":"10.3390/condmat8010028","DOIUrl":null,"url":null,"abstract":"We studied the spin-dependent behavior of the electronic properties of alternating periodic potentials applied to finite and infinite graphene superlattices coupled with tunable electrostatic and exchange fields. The band structures were evaluated using the transfer matrix approach. The results of tuning the coupled electrostatic potential and exchange field showed that the spin-dependent anisotropy of a Dirac cone depends on the difference between the amplitude of periodically modulated coupling. Spin-dependent collimation occurs when the modulations become zero-average potentials with the ratio of both periodically modulated strengths equals one, in which one spin can be moved freely, but the other one is highly collimated. In addition, we find that the number of extra Dirac points in the infinite superlattice is spin-dependent. In terms of spin-ups, their number increases with an increase in the strength of both modulated fields. To ensure this calculation, we also compute the conductance of finite periodic modulation at zero energy. It is shown that the peaks of the conductance occur when the extra Dirac point emerges. This result may be utilized to design graphene-based devices with highly spin-polarized collimators.","PeriodicalId":10665,"journal":{"name":"Condensed Matter","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Manipulation of Spin-Dependent Anisotropy of a Dirac Cone in a Graphene Superlattice with Alternating Periodic Electrostatic and Exchange Fields\",\"authors\":\"Pattana Somroob, W. Liewrian\",\"doi\":\"10.3390/condmat8010028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the spin-dependent behavior of the electronic properties of alternating periodic potentials applied to finite and infinite graphene superlattices coupled with tunable electrostatic and exchange fields. The band structures were evaluated using the transfer matrix approach. The results of tuning the coupled electrostatic potential and exchange field showed that the spin-dependent anisotropy of a Dirac cone depends on the difference between the amplitude of periodically modulated coupling. Spin-dependent collimation occurs when the modulations become zero-average potentials with the ratio of both periodically modulated strengths equals one, in which one spin can be moved freely, but the other one is highly collimated. In addition, we find that the number of extra Dirac points in the infinite superlattice is spin-dependent. In terms of spin-ups, their number increases with an increase in the strength of both modulated fields. To ensure this calculation, we also compute the conductance of finite periodic modulation at zero energy. It is shown that the peaks of the conductance occur when the extra Dirac point emerges. This result may be utilized to design graphene-based devices with highly spin-polarized collimators.\",\"PeriodicalId\":10665,\"journal\":{\"name\":\"Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/condmat8010028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat8010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了应用于有限和无限石墨烯超晶格的交变周期电势与可调静电场和交换场耦合的电子性质的自旋相关行为。使用转移矩阵方法来评估能带结构。调谐耦合静电势和交换场的结果表明,狄拉克锥的自旋相关各向异性取决于周期调制耦合振幅之间的差异。当两个周期性调制强度之比等于1时,调制变为零平均电位时,就会发生自旋相关准直,其中一个自旋可以自由移动,但另一个自旋高度准直。此外,我们发现无限超晶格中额外的狄拉克点的数量与自旋有关。就自旋上升而言,它们的数量随着两个调制场强度的增加而增加。为了确保这种计算,我们还计算了零能量下有限周期调制的电导。结果表明,当额外的狄拉克点出现时,电导出现峰值。该结果可用于设计具有高度自旋极化准直器的石墨烯基器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical Manipulation of Spin-Dependent Anisotropy of a Dirac Cone in a Graphene Superlattice with Alternating Periodic Electrostatic and Exchange Fields
We studied the spin-dependent behavior of the electronic properties of alternating periodic potentials applied to finite and infinite graphene superlattices coupled with tunable electrostatic and exchange fields. The band structures were evaluated using the transfer matrix approach. The results of tuning the coupled electrostatic potential and exchange field showed that the spin-dependent anisotropy of a Dirac cone depends on the difference between the amplitude of periodically modulated coupling. Spin-dependent collimation occurs when the modulations become zero-average potentials with the ratio of both periodically modulated strengths equals one, in which one spin can be moved freely, but the other one is highly collimated. In addition, we find that the number of extra Dirac points in the infinite superlattice is spin-dependent. In terms of spin-ups, their number increases with an increase in the strength of both modulated fields. To ensure this calculation, we also compute the conductance of finite periodic modulation at zero energy. It is shown that the peaks of the conductance occur when the extra Dirac point emerges. This result may be utilized to design graphene-based devices with highly spin-polarized collimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter
Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
2.90
自引率
11.80%
发文量
58
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信