{"title":"巴西东北部Rio do Peixe盆地断裂带对砂岩流体流动影响的三维数值模拟","authors":"R. Stohler, F. Nogueira, C. L. Mello, J. Souza","doi":"10.1144/petgeo2022-024","DOIUrl":null,"url":null,"abstract":"Deformation bands are usually responsible for up to 3 orders of magnitude reduction in permeability perpendicularly to the structure planes, while the fault core represent a reduction of up to 7 orders of magnitude in cross-fault permeability, imposing large anisotropies to fluid flow. As deformation bands occur distributed along the damage zone, they impact not only the across-fault flow, but also the along-fault flow. The fault core is usually represented by fault transmissibility multipliers (TMs), along the fault planes, using well established workflows. However, there is a lack of methods to represent fault damage zones in any direction and grid cell sizes. In this context, we proposed new methods to: (1) estimate the deformation intensity in damage zones; (2) calculate their most representative value within the cell domain; (3) calculate the equivalent permeability of a cell containing oblique deformation bands. The workflow is applied to the 3D numerical model of the Santa Helena High, in Rio do Peixe Basin, NE Brazil. We performed streamline simulations in 4 models to evaluate the impact of fault damage zones and the fault core in fluid flow. Our models show that the fault core and damage zone negatively affected the performance of the reservoir.\n \n Supplementary material:\n Appendix A, describing the method developed to estimate the deformation intensity in damage zones, and Appendix B, describing the method develop to calculate the equivalent permeability, are available at\n https://doi.org/10.6084/m9.figshare.c.6251469\n","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D numerical modeling and simulation of the impact of fault zones on fluid flow in sandstones of the Rio do Peixe Basin, NE Brazil\",\"authors\":\"R. Stohler, F. Nogueira, C. L. Mello, J. Souza\",\"doi\":\"10.1144/petgeo2022-024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deformation bands are usually responsible for up to 3 orders of magnitude reduction in permeability perpendicularly to the structure planes, while the fault core represent a reduction of up to 7 orders of magnitude in cross-fault permeability, imposing large anisotropies to fluid flow. As deformation bands occur distributed along the damage zone, they impact not only the across-fault flow, but also the along-fault flow. The fault core is usually represented by fault transmissibility multipliers (TMs), along the fault planes, using well established workflows. However, there is a lack of methods to represent fault damage zones in any direction and grid cell sizes. In this context, we proposed new methods to: (1) estimate the deformation intensity in damage zones; (2) calculate their most representative value within the cell domain; (3) calculate the equivalent permeability of a cell containing oblique deformation bands. The workflow is applied to the 3D numerical model of the Santa Helena High, in Rio do Peixe Basin, NE Brazil. We performed streamline simulations in 4 models to evaluate the impact of fault damage zones and the fault core in fluid flow. Our models show that the fault core and damage zone negatively affected the performance of the reservoir.\\n \\n Supplementary material:\\n Appendix A, describing the method developed to estimate the deformation intensity in damage zones, and Appendix B, describing the method develop to calculate the equivalent permeability, are available at\\n https://doi.org/10.6084/m9.figshare.c.6251469\\n\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2022-024\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2022-024","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
摘要
变形带通常使垂直于构造面的渗透率降低3个数量级,而断层核则使断层间渗透率降低7个数量级,使流体流动具有较大的各向异性。变形带沿破坏带分布,不仅影响断层间流动,而且影响断层顺行流动。故障核通常由故障传递率乘法器(TMs)表示,沿着故障平面,使用完善的工作流程。然而,缺乏在任意方向和网格大小上表示断层损伤区的方法。在此背景下,我们提出了新的方法:(1)估计损伤区域的变形强度;(2)计算它们在胞域内最具代表性的值;(3)计算含斜变形带单元的等效渗透率。该工作流程应用于巴西东北部里约热内卢do Peixe盆地Santa Helena High的三维数值模型。利用4个模型进行流线模拟,评价断层破坏带和断层核对流体流动的影响。我们的模型表明,断层核和损伤带对储层的性能有负面影响。补充资料:附录A描述了用于估计损伤区变形强度的方法,附录B描述了用于计算等效渗透率的方法,可在https://doi.org/10.6084/m9.figshare.c.6251469上获得
3D numerical modeling and simulation of the impact of fault zones on fluid flow in sandstones of the Rio do Peixe Basin, NE Brazil
Deformation bands are usually responsible for up to 3 orders of magnitude reduction in permeability perpendicularly to the structure planes, while the fault core represent a reduction of up to 7 orders of magnitude in cross-fault permeability, imposing large anisotropies to fluid flow. As deformation bands occur distributed along the damage zone, they impact not only the across-fault flow, but also the along-fault flow. The fault core is usually represented by fault transmissibility multipliers (TMs), along the fault planes, using well established workflows. However, there is a lack of methods to represent fault damage zones in any direction and grid cell sizes. In this context, we proposed new methods to: (1) estimate the deformation intensity in damage zones; (2) calculate their most representative value within the cell domain; (3) calculate the equivalent permeability of a cell containing oblique deformation bands. The workflow is applied to the 3D numerical model of the Santa Helena High, in Rio do Peixe Basin, NE Brazil. We performed streamline simulations in 4 models to evaluate the impact of fault damage zones and the fault core in fluid flow. Our models show that the fault core and damage zone negatively affected the performance of the reservoir.
Supplementary material:
Appendix A, describing the method developed to estimate the deformation intensity in damage zones, and Appendix B, describing the method develop to calculate the equivalent permeability, are available at
https://doi.org/10.6084/m9.figshare.c.6251469
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.