{"title":"圆锥度量对常标曲率的保形变形","authors":"Thalia D. Jeffres, J. Rowlett","doi":"10.4310/MRL.2010.v17.n3.a6","DOIUrl":null,"url":null,"abstract":"We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the ``link'' of the singular set. Within this class of ``conic metrics,'' we determine obstructions to the existence of conformal deformations to constant scalar curvature of any sign (positive, negative, or zero). For conic metrics with negative scalar curvature, we determine sufficient conditions for the existence of a conformal deformation to a conic metric with constant scalar curvature $-1$; moreover, we show that this metric is unique within its conformal class of conic metrics. Our work is in dimensions three and higher.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"17 1","pages":"449-465"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Conformal deformations of conic metrics to constant scalar curvature\",\"authors\":\"Thalia D. Jeffres, J. Rowlett\",\"doi\":\"10.4310/MRL.2010.v17.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the ``link'' of the singular set. Within this class of ``conic metrics,'' we determine obstructions to the existence of conformal deformations to constant scalar curvature of any sign (positive, negative, or zero). For conic metrics with negative scalar curvature, we determine sufficient conditions for the existence of a conformal deformation to a conic metric with constant scalar curvature $-1$; moreover, we show that this metric is unique within its conformal class of conic metrics. Our work is in dimensions three and higher.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"17 1\",\"pages\":\"449-465\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/MRL.2010.v17.n3.a6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/MRL.2010.v17.n3.a6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Conformal deformations of conic metrics to constant scalar curvature
We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the ``link'' of the singular set. Within this class of ``conic metrics,'' we determine obstructions to the existence of conformal deformations to constant scalar curvature of any sign (positive, negative, or zero). For conic metrics with negative scalar curvature, we determine sufficient conditions for the existence of a conformal deformation to a conic metric with constant scalar curvature $-1$; moreover, we show that this metric is unique within its conformal class of conic metrics. Our work is in dimensions three and higher.
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.