Venkatesan Govindaraj, Kalpana Manoharan, S. Sakthivel, K. Guruchandran, W. Mathew
{"title":"CO2气体联合处理纺织染料浴废水的研究","authors":"Venkatesan Govindaraj, Kalpana Manoharan, S. Sakthivel, K. Guruchandran, W. Mathew","doi":"10.3233/ajw230025","DOIUrl":null,"url":null,"abstract":"In this study, baking soda extraction from textile dye bath effluent has been investigated. The novel notion of employing amino acid additions to improve the standard Solvay method and thereby boost the efficiency of Na+ recovery has been investigated. Glycine, L-arginine, and L-alanine are three amino acid additions examined for their effect on enhancing Na+ recovery, and the best-suited additive is chosen. The dumping of brackish dye bath effluent, which has a high percentage of sodium chloride, causes textile dye baths from the textile industry. The primary goal was to remove Na+ (sodium) from the effluent using carbon dioxide gas, which has environmental benefits. Carbon dioxide (CO2) is the most common greenhouse gas, trapping heat and raising global temperatures, therefore contributing to climate change. The Solvay process is used to transform Na+ in salty wastewater into a valuable product. The effect of different operating variables such as NH4OH (ammonium hydroxide) concentration, reaction temperature, carbonation time, and carbon dioxide gas flow rate on bicarbonate production was investigated. Maximum sodium recovery of about 68 percent is attained under optimal circumstances. When compared with the regular Solvay process, the modified Solvay method has a greater recovery efficiency (33 percent). Amino acid addition (arginine) improved conversion efficiency while also lowering the process’s ammonia need.","PeriodicalId":8553,"journal":{"name":"Asian Journal of Water, Environment and Pollution","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combined Approach for the Treatment of Textile Dye Bath Effluent Using CO2 Gas\",\"authors\":\"Venkatesan Govindaraj, Kalpana Manoharan, S. Sakthivel, K. Guruchandran, W. Mathew\",\"doi\":\"10.3233/ajw230025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, baking soda extraction from textile dye bath effluent has been investigated. The novel notion of employing amino acid additions to improve the standard Solvay method and thereby boost the efficiency of Na+ recovery has been investigated. Glycine, L-arginine, and L-alanine are three amino acid additions examined for their effect on enhancing Na+ recovery, and the best-suited additive is chosen. The dumping of brackish dye bath effluent, which has a high percentage of sodium chloride, causes textile dye baths from the textile industry. The primary goal was to remove Na+ (sodium) from the effluent using carbon dioxide gas, which has environmental benefits. Carbon dioxide (CO2) is the most common greenhouse gas, trapping heat and raising global temperatures, therefore contributing to climate change. The Solvay process is used to transform Na+ in salty wastewater into a valuable product. The effect of different operating variables such as NH4OH (ammonium hydroxide) concentration, reaction temperature, carbonation time, and carbon dioxide gas flow rate on bicarbonate production was investigated. Maximum sodium recovery of about 68 percent is attained under optimal circumstances. When compared with the regular Solvay process, the modified Solvay method has a greater recovery efficiency (33 percent). Amino acid addition (arginine) improved conversion efficiency while also lowering the process’s ammonia need.\",\"PeriodicalId\":8553,\"journal\":{\"name\":\"Asian Journal of Water, Environment and Pollution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Water, Environment and Pollution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ajw230025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Water, Environment and Pollution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ajw230025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Combined Approach for the Treatment of Textile Dye Bath Effluent Using CO2 Gas
In this study, baking soda extraction from textile dye bath effluent has been investigated. The novel notion of employing amino acid additions to improve the standard Solvay method and thereby boost the efficiency of Na+ recovery has been investigated. Glycine, L-arginine, and L-alanine are three amino acid additions examined for their effect on enhancing Na+ recovery, and the best-suited additive is chosen. The dumping of brackish dye bath effluent, which has a high percentage of sodium chloride, causes textile dye baths from the textile industry. The primary goal was to remove Na+ (sodium) from the effluent using carbon dioxide gas, which has environmental benefits. Carbon dioxide (CO2) is the most common greenhouse gas, trapping heat and raising global temperatures, therefore contributing to climate change. The Solvay process is used to transform Na+ in salty wastewater into a valuable product. The effect of different operating variables such as NH4OH (ammonium hydroxide) concentration, reaction temperature, carbonation time, and carbon dioxide gas flow rate on bicarbonate production was investigated. Maximum sodium recovery of about 68 percent is attained under optimal circumstances. When compared with the regular Solvay process, the modified Solvay method has a greater recovery efficiency (33 percent). Amino acid addition (arginine) improved conversion efficiency while also lowering the process’s ammonia need.
期刊介绍:
Asia, as a whole region, faces severe stress on water availability, primarily due to high population density. Many regions of the continent face severe problems of water pollution on local as well as regional scale and these have to be tackled with a pan-Asian approach. However, the available literature on the subject is generally based on research done in Europe and North America. Therefore, there is an urgent and strong need for an Asian journal with its focus on the region and wherein the region specific problems are addressed in an intelligent manner. In Asia, besides water, there are several other issues related to environment, such as; global warming and its impact; intense land/use and shifting pattern of agriculture; issues related to fertilizer applications and pesticide residues in soil and water; and solid and liquid waste management particularly in industrial and urban areas. Asia is also a region with intense mining activities whereby serious environmental problems related to land/use, loss of top soil, water pollution and acid mine drainage are faced by various communities. Essentially, Asians are confronted with environmental problems on many fronts. Many pressing issues in the region interlink various aspects of environmental problems faced by population in this densely habited region in the world. Pollution is one such serious issue for many countries since there are many transnational water bodies that spread the pollutants across the entire region. Water, environment and pollution together constitute a three axial problem that all concerned people in the region would like to focus on.