进化代数中的自然族

Pub Date : 2020-06-25 DOI:10.5565/publmat6612206
N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina
{"title":"进化代数中的自然族","authors":"N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina","doi":"10.5565/publmat6612206","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis. \nWe also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals. \nNilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor. \nWe finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Natural families in evolution algebras\",\"authors\":\"N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina\",\"doi\":\"10.5565/publmat6612206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis. \\nWe also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals. \\nNilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor. \\nWe finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6612206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文引入了进化秩的概念,并将进化代数分解为其零化子加上进化秩为1的扩展进化子空间。这种分解可以用来证明在非退化演化代数中,任何自然和正交向量族都可以扩展到自然基。中心结果是那些正交线性无关向量族的特征,这些向量族可以扩展到自然基。我们还考虑了完美演化代数中的理想,并证明了它们与基本理想一致。三阶幂零元可以通过只看结构矩阵来局部化(在每个元素都是正方形的域上的完美进化代数中):任何消失的主辅都提供一个。相反,如果任意域上的完美演化代数具有三阶幂零元,则其结构矩阵具有消失的主辅。最后,我们考虑了伴随演化代数,并将其性质与初始演化代数中的相应性质联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Natural families in evolution algebras
In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis. We also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals. Nilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor. We finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信