N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina
{"title":"进化代数中的自然族","authors":"N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina","doi":"10.5565/publmat6612206","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis. \nWe also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals. \nNilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor. \nWe finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Natural families in evolution algebras\",\"authors\":\"N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina\",\"doi\":\"10.5565/publmat6612206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis. \\nWe also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals. \\nNilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor. \\nWe finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.\",\"PeriodicalId\":54531,\"journal\":{\"name\":\"Publicacions Matematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publicacions Matematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6612206\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis.
We also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals.
Nilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor.
We finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.
期刊介绍:
Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page.
Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.