阳光影响下微藻生长数学模型的分岔分析

Q2 Agricultural and Biological Sciences
Lingga Sanjaya Putra Mahardhika, F. Adi-Kusumo, D. Ertiningsih
{"title":"阳光影响下微藻生长数学模型的分岔分析","authors":"Lingga Sanjaya Putra Mahardhika, F. Adi-Kusumo, D. Ertiningsih","doi":"10.55630/j.biomath.2023.01.307","DOIUrl":null,"url":null,"abstract":"\n\n\nIn this paper is considered a microalgae growth model under the influence of sunlight. The model is a two-dimensional system of the first order Ordinary Differential Equations (ODE) with a ten-dimensional parameter space. For this model, we study the existence of equilibrium points and their stability, and determine a bifurcation of the system when the value of some parameters is varied. The Lambert w function is used to calculate equilibrium points and apply the linearization technique to provide their stabilities. By varying the value of some parameters numerically, we found a transcritical bifurcation of the system and show stability regions of the equilibrium points in parameter diagrams. The bifurcation shows that the microalgae have a minimum sustainable nutrition supply and have a minimum light intensity that plays an important role for survival in a chemostat which has a certain depth. The results can be used to design a chemostat in optimizing the growth of microalgae.\n\n\n","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation analysis of a mathematical model of microalgae growth under the influence of sunlight\",\"authors\":\"Lingga Sanjaya Putra Mahardhika, F. Adi-Kusumo, D. Ertiningsih\",\"doi\":\"10.55630/j.biomath.2023.01.307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nIn this paper is considered a microalgae growth model under the influence of sunlight. The model is a two-dimensional system of the first order Ordinary Differential Equations (ODE) with a ten-dimensional parameter space. For this model, we study the existence of equilibrium points and their stability, and determine a bifurcation of the system when the value of some parameters is varied. The Lambert w function is used to calculate equilibrium points and apply the linearization technique to provide their stabilities. By varying the value of some parameters numerically, we found a transcritical bifurcation of the system and show stability regions of the equilibrium points in parameter diagrams. The bifurcation shows that the microalgae have a minimum sustainable nutrition supply and have a minimum light intensity that plays an important role for survival in a chemostat which has a certain depth. The results can be used to design a chemostat in optimizing the growth of microalgae.\\n\\n\\n\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55630/j.biomath.2023.01.307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/j.biomath.2023.01.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了微藻在阳光作用下的生长模型。该模型是一个具有十维参数空间的二维一阶常微分方程系统。对于该模型,我们研究了平衡点的存在性及其稳定性,并确定了当某些参数的值发生变化时系统的一个分支。利用朗伯特w函数计算平衡点,并应用线性化技术来保证平衡点的稳定性。通过数值改变某些参数的值,我们找到了系统的一个跨临界分岔,并在参数图中给出了平衡点的稳定区域。这种分化表明,微藻在具有一定深度的趋化器中具有最低的可持续营养供应和最低的光强,对其生存起着重要的作用。研究结果可用于设计微藻生长的恒化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation analysis of a mathematical model of microalgae growth under the influence of sunlight
In this paper is considered a microalgae growth model under the influence of sunlight. The model is a two-dimensional system of the first order Ordinary Differential Equations (ODE) with a ten-dimensional parameter space. For this model, we study the existence of equilibrium points and their stability, and determine a bifurcation of the system when the value of some parameters is varied. The Lambert w function is used to calculate equilibrium points and apply the linearization technique to provide their stabilities. By varying the value of some parameters numerically, we found a transcritical bifurcation of the system and show stability regions of the equilibrium points in parameter diagrams. The bifurcation shows that the microalgae have a minimum sustainable nutrition supply and have a minimum light intensity that plays an important role for survival in a chemostat which has a certain depth. The results can be used to design a chemostat in optimizing the growth of microalgae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信