{"title":"水热反应温度对CdWO4-RGO纳米复合材料光催化性能的影响","authors":"M. T. T. Moghadam, M. Babamoradi, R. Azimirad","doi":"10.22052/JNS.2019.04.001","DOIUrl":null,"url":null,"abstract":"Cadmium tungstate (CdWO4) nanorods and CdWO4-reduced graphene oxide (RGO) nanocomposites have been prepared by the hydrothermal method at 140, 160 and 180 oC reaction temperatures. The synthesized samples were characterized by X-ray powder diffraction, scanning electron microscopy (SEM), Fourier transform infrared, photoluminescence spectroscopy and Raman spectroscopy. SEM image showed the pure sample consist of nanorods with 50-100 nm diameter and ~1 µm length. The images of the nanocomposite samples clearly showed existence of CdWO4 nanorods and graphene sheets together. The photocatalytic activities of the as-prepared samples were investigated by degradation of methylene blue under the visible light irradiation. An enhancement in photocatalytic activity was observed with CdWO4-RGO nanocomposites in compare with the pure CdWO4. The effect of reaction temperature on the photocatalytic activity of the prepared nanocomposites was also investigated. The results showed that the CdWO4-RGO sample which prepared at 160 oC has more catalytic activity than the other samples.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"9 1","pages":"600-609"},"PeriodicalIF":1.4000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of hydrothermal reaction temperature on the photocatalytic properties of CdWO4-RGO nanocomposites\",\"authors\":\"M. T. T. Moghadam, M. Babamoradi, R. Azimirad\",\"doi\":\"10.22052/JNS.2019.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cadmium tungstate (CdWO4) nanorods and CdWO4-reduced graphene oxide (RGO) nanocomposites have been prepared by the hydrothermal method at 140, 160 and 180 oC reaction temperatures. The synthesized samples were characterized by X-ray powder diffraction, scanning electron microscopy (SEM), Fourier transform infrared, photoluminescence spectroscopy and Raman spectroscopy. SEM image showed the pure sample consist of nanorods with 50-100 nm diameter and ~1 µm length. The images of the nanocomposite samples clearly showed existence of CdWO4 nanorods and graphene sheets together. The photocatalytic activities of the as-prepared samples were investigated by degradation of methylene blue under the visible light irradiation. An enhancement in photocatalytic activity was observed with CdWO4-RGO nanocomposites in compare with the pure CdWO4. The effect of reaction temperature on the photocatalytic activity of the prepared nanocomposites was also investigated. The results showed that the CdWO4-RGO sample which prepared at 160 oC has more catalytic activity than the other samples.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"9 1\",\"pages\":\"600-609\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2019.04.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2019.04.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Effect of hydrothermal reaction temperature on the photocatalytic properties of CdWO4-RGO nanocomposites
Cadmium tungstate (CdWO4) nanorods and CdWO4-reduced graphene oxide (RGO) nanocomposites have been prepared by the hydrothermal method at 140, 160 and 180 oC reaction temperatures. The synthesized samples were characterized by X-ray powder diffraction, scanning electron microscopy (SEM), Fourier transform infrared, photoluminescence spectroscopy and Raman spectroscopy. SEM image showed the pure sample consist of nanorods with 50-100 nm diameter and ~1 µm length. The images of the nanocomposite samples clearly showed existence of CdWO4 nanorods and graphene sheets together. The photocatalytic activities of the as-prepared samples were investigated by degradation of methylene blue under the visible light irradiation. An enhancement in photocatalytic activity was observed with CdWO4-RGO nanocomposites in compare with the pure CdWO4. The effect of reaction temperature on the photocatalytic activity of the prepared nanocomposites was also investigated. The results showed that the CdWO4-RGO sample which prepared at 160 oC has more catalytic activity than the other samples.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.