粗曲线的某些二次扭曲的临界$L$-值

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Dkabrowski, Tomasz Jkedrzejak, L. Szymaszkiewicz
{"title":"粗曲线的某些二次扭曲的临界$L$-值","authors":"A. Dkabrowski, Tomasz Jkedrzejak, L. Szymaszkiewicz","doi":"10.4310/ajm.2020.v24.n2.a4","DOIUrl":null,"url":null,"abstract":"Let $K=\\Bbb Q(\\sqrt{-q})$, where $q$ is a prime congruent to $3$ modulo $4$. Let $A=A(q)$ denote the Gross curve. Let $E=A^{(-\\beta)}$ denote its quadratic twist, with $\\beta=\\sqrt{-q}$. The curve $E$ is defined over the Hilbert class field $H$ of $K$. We use Magma to calculate the values $L(E/H,1)$ for all such $q$'s up to some reasonable ranges (different for $q\\equiv 7 \\, \\text{mod} \\, 8$ and $q\\equiv 3 \\, \\text{mod} \\, 8$). All these values are non-zero, and using the Birch and Swinnerton-Dyer conjecture, we can calculate hypothetical orders of $\\sza(E/H)$ in these cases. Our calculations extend those given by J. Choi and J. Coates [{\\it Iwasawa theory of quadratic twists of $X_0(49)$}, Acta Mathematica Sinica(English Series) {\\bf 34} (2017), 19-28] for the case $q=7$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Critical $L$-values for some quadratic twists of gross curves\",\"authors\":\"A. Dkabrowski, Tomasz Jkedrzejak, L. Szymaszkiewicz\",\"doi\":\"10.4310/ajm.2020.v24.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K=\\\\Bbb Q(\\\\sqrt{-q})$, where $q$ is a prime congruent to $3$ modulo $4$. Let $A=A(q)$ denote the Gross curve. Let $E=A^{(-\\\\beta)}$ denote its quadratic twist, with $\\\\beta=\\\\sqrt{-q}$. The curve $E$ is defined over the Hilbert class field $H$ of $K$. We use Magma to calculate the values $L(E/H,1)$ for all such $q$'s up to some reasonable ranges (different for $q\\\\equiv 7 \\\\, \\\\text{mod} \\\\, 8$ and $q\\\\equiv 3 \\\\, \\\\text{mod} \\\\, 8$). All these values are non-zero, and using the Birch and Swinnerton-Dyer conjecture, we can calculate hypothetical orders of $\\\\sza(E/H)$ in these cases. Our calculations extend those given by J. Choi and J. Coates [{\\\\it Iwasawa theory of quadratic twists of $X_0(49)$}, Acta Mathematica Sinica(English Series) {\\\\bf 34} (2017), 19-28] for the case $q=7$.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2020.v24.n2.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2020.v24.n2.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$K=\Bbb Q(\sqrt{-q})$,其中$q$是一个质数,等于$3$模$4$。设$A=A(q)$表示Gross曲线。设$E=A^{(-\beta)}$表示它的二次扭曲,用$\beta=\sqrt{-q}$表示。曲线$E$是在$K$的Hilbert类字段$H$上定义的。我们使用Magma计算所有这些$q$的值$L(E/H,1)$,直到一些合理的范围($q\equiv 7 \, \text{mod} \, 8$和$q\equiv 3 \, \text{mod} \, 8$不同)。所有这些值都是非零的,并且使用Birch和Swinnerton-Dyer猜想,我们可以在这些情况下计算$\sza(E/H)$的假设阶数。对于{\it}$q=7$,我们的计算扩展了J. Choi和J. Coates [{\bfIwasawa二次扭曲理论}{\it$X_0(49)$},中国数学学报(英文系列)34(2017),19-28]给出的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical $L$-values for some quadratic twists of gross curves
Let $K=\Bbb Q(\sqrt{-q})$, where $q$ is a prime congruent to $3$ modulo $4$. Let $A=A(q)$ denote the Gross curve. Let $E=A^{(-\beta)}$ denote its quadratic twist, with $\beta=\sqrt{-q}$. The curve $E$ is defined over the Hilbert class field $H$ of $K$. We use Magma to calculate the values $L(E/H,1)$ for all such $q$'s up to some reasonable ranges (different for $q\equiv 7 \, \text{mod} \, 8$ and $q\equiv 3 \, \text{mod} \, 8$). All these values are non-zero, and using the Birch and Swinnerton-Dyer conjecture, we can calculate hypothetical orders of $\sza(E/H)$ in these cases. Our calculations extend those given by J. Choi and J. Coates [{\it Iwasawa theory of quadratic twists of $X_0(49)$}, Acta Mathematica Sinica(English Series) {\bf 34} (2017), 19-28] for the case $q=7$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信