Rd中分支布朗运动的极大值

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Yujin H. Kim, E. Lubetzky, O. Zeitouni
{"title":"Rd中分支布朗运动的极大值","authors":"Yujin H. Kim, E. Lubetzky, O. Zeitouni","doi":"10.1214/22-aap1848","DOIUrl":null,"url":null,"abstract":"(When the dimension d is clear from the context, we omit it from the notation, writing e.g. mt for mt(d), etc.) When d = 1, Bramson [5] proved the convergence in distribution of maxv∈NtX (v) t − mt(1), and the limit was identified by Lalley and Selke [10] to be the limit of a certain derivative martingale. It is not hard to deduce from their results and methods (see, e.g., [15, Thm. 1.1]) that, when d= 1,","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The maximum of branching Brownian motion in Rd\",\"authors\":\"Yujin H. Kim, E. Lubetzky, O. Zeitouni\",\"doi\":\"10.1214/22-aap1848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(When the dimension d is clear from the context, we omit it from the notation, writing e.g. mt for mt(d), etc.) When d = 1, Bramson [5] proved the convergence in distribution of maxv∈NtX (v) t − mt(1), and the limit was identified by Lalley and Selke [10] to be the limit of a certain derivative martingale. It is not hard to deduce from their results and methods (see, e.g., [15, Thm. 1.1]) that, when d= 1,\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1848\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1848","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

(当维度d从上下文中清楚时,我们将其从符号中省略,例如为mt(d)写mt等。)当d=1时,Bramson[5]证明了maxv∈NtX(v)t−mt(1)在分布上的收敛性,Lalley和Selke[10]将该极限确定为某个导数鞅的极限。从他们的结果和方法不难推断(例如参见[15,Thm.1.1]),当d=1时,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The maximum of branching Brownian motion in Rd
(When the dimension d is clear from the context, we omit it from the notation, writing e.g. mt for mt(d), etc.) When d = 1, Bramson [5] proved the convergence in distribution of maxv∈NtX (v) t − mt(1), and the limit was identified by Lalley and Selke [10] to be the limit of a certain derivative martingale. It is not hard to deduce from their results and methods (see, e.g., [15, Thm. 1.1]) that, when d= 1,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信