Steklov本征函数在翘曲积流形上的指数局部化:象上跳蚤现象

IF 0.5 Q3 MATHEMATICS
Thierry Daudé, Bernard Helffer, François Nicoleau
{"title":"Steklov本征函数在翘曲积流形上的指数局部化:象上跳蚤现象","authors":"Thierry Daudé,&nbsp;Bernard Helffer,&nbsp;François Nicoleau","doi":"10.1007/s40316-021-00185-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the analysis of Steklov eigenvalues and Steklov eigenfunctions on a class of warped product Riemannian manifolds (<i>M</i>, <i>g</i>) whose boundary <span>\\(\\partial M\\)</span> consists in two distinct connected components <span>\\(\\Gamma _0\\)</span> and <span>\\(\\Gamma _1\\)</span>. First, we show that the Steklov eigenvalues can be divided into two families <span>\\((\\lambda _m^\\pm )_{m \\ge 0}\\)</span> which satisfy accurate asymptotics as <span>\\(m \\rightarrow \\infty \\)</span>. Second, we consider the associated Steklov eigenfunctions which are the harmonic extensions of the boundary Dirichlet to Neumann eigenfunctions. In the case of symmetric warped product, we prove that the Steklov eigenfunctions are exponentially localized on the whole boundary <span>\\(\\partial M\\)</span> as <span>\\(m \\rightarrow \\infty \\)</span>. When we add an asymmetric perturbation of the metric to a symmetric warped product, we observe in almost all cases a flea on the elephant effect. Roughly speaking, we prove that “half” the Steklov eigenfunctions are exponentially localized on one connected component of the boundary, say <span>\\(\\Gamma _0\\)</span>, and the other half on the other connected component <span>\\(\\Gamma _1\\)</span> as <span>\\(m \\rightarrow \\infty \\)</span>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"47 2","pages":"295 - 330"},"PeriodicalIF":0.5000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exponential localization of Steklov eigenfunctions on warped product manifolds: the flea on the elephant phenomenon\",\"authors\":\"Thierry Daudé,&nbsp;Bernard Helffer,&nbsp;François Nicoleau\",\"doi\":\"10.1007/s40316-021-00185-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to the analysis of Steklov eigenvalues and Steklov eigenfunctions on a class of warped product Riemannian manifolds (<i>M</i>, <i>g</i>) whose boundary <span>\\\\(\\\\partial M\\\\)</span> consists in two distinct connected components <span>\\\\(\\\\Gamma _0\\\\)</span> and <span>\\\\(\\\\Gamma _1\\\\)</span>. First, we show that the Steklov eigenvalues can be divided into two families <span>\\\\((\\\\lambda _m^\\\\pm )_{m \\\\ge 0}\\\\)</span> which satisfy accurate asymptotics as <span>\\\\(m \\\\rightarrow \\\\infty \\\\)</span>. Second, we consider the associated Steklov eigenfunctions which are the harmonic extensions of the boundary Dirichlet to Neumann eigenfunctions. In the case of symmetric warped product, we prove that the Steklov eigenfunctions are exponentially localized on the whole boundary <span>\\\\(\\\\partial M\\\\)</span> as <span>\\\\(m \\\\rightarrow \\\\infty \\\\)</span>. When we add an asymmetric perturbation of the metric to a symmetric warped product, we observe in almost all cases a flea on the elephant effect. Roughly speaking, we prove that “half” the Steklov eigenfunctions are exponentially localized on one connected component of the boundary, say <span>\\\\(\\\\Gamma _0\\\\)</span>, and the other half on the other connected component <span>\\\\(\\\\Gamma _1\\\\)</span> as <span>\\\\(m \\\\rightarrow \\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"47 2\",\"pages\":\"295 - 330\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-021-00185-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00185-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了一类翘曲积Riemannian流形(M,g)上的Steklov本征值和Steklov特征函数,该流形的边界(部分M)由两个不同的连通分量(γ_0)和(γ_1\)组成。首先,我们证明了Steklov特征值可以分为两个族\(λ_m^\pm)_{m\ge 0}\),它们满足精确的渐近性为\(m\rightarrow\infty\)。其次,我们考虑相关的Steklov本征函数,它是边界Dirichlet到Neumann本征函数的调和扩展。在对称翘曲积的情况下,我们证明了Steklov本征函数在整个边界\(\partial M\)上的指数局部化为\(M\rightarrow\infty\)。当我们将度量的非对称扰动添加到对称翘曲乘积中时,我们几乎在所有情况下都观察到大象身上的跳蚤效应。粗略地说,我们证明了Steklov本征函数的“一半”以指数形式定域在边界的一个连通分量上,比如\(\Gamma_0\),另一半以指数形式定位在另一个连通组件上,比如\\(m\rightarrow\infty\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential localization of Steklov eigenfunctions on warped product manifolds: the flea on the elephant phenomenon

This paper is devoted to the analysis of Steklov eigenvalues and Steklov eigenfunctions on a class of warped product Riemannian manifolds (Mg) whose boundary \(\partial M\) consists in two distinct connected components \(\Gamma _0\) and \(\Gamma _1\). First, we show that the Steklov eigenvalues can be divided into two families \((\lambda _m^\pm )_{m \ge 0}\) which satisfy accurate asymptotics as \(m \rightarrow \infty \). Second, we consider the associated Steklov eigenfunctions which are the harmonic extensions of the boundary Dirichlet to Neumann eigenfunctions. In the case of symmetric warped product, we prove that the Steklov eigenfunctions are exponentially localized on the whole boundary \(\partial M\) as \(m \rightarrow \infty \). When we add an asymmetric perturbation of the metric to a symmetric warped product, we observe in almost all cases a flea on the elephant effect. Roughly speaking, we prove that “half” the Steklov eigenfunctions are exponentially localized on one connected component of the boundary, say \(\Gamma _0\), and the other half on the other connected component \(\Gamma _1\) as \(m \rightarrow \infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信