用于挥发性有机化合物催化氧化的介孔催化剂:制备、机理和应用

IF 4.9 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Jing Wang, Peifen Wang, Zhijun Wu, Tao Yu, A. Abudula, Mingzhu Sun, Xiaoxun Ma, Guoqing Guan
{"title":"用于挥发性有机化合物催化氧化的介孔催化剂:制备、机理和应用","authors":"Jing Wang, Peifen Wang, Zhijun Wu, Tao Yu, A. Abudula, Mingzhu Sun, Xiaoxun Ma, Guoqing Guan","doi":"10.1515/revce-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications\",\"authors\":\"Jing Wang, Peifen Wang, Zhijun Wu, Tao Yu, A. Abudula, Mingzhu Sun, Xiaoxun Ma, Guoqing Guan\",\"doi\":\"10.1515/revce-2021-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.\",\"PeriodicalId\":54485,\"journal\":{\"name\":\"Reviews in Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/revce-2021-0029\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2021-0029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

摘要

摘要挥发性有机化合物主要来源于人类活动,但对环境和人体健康有害。催化氧化是现有技术中在相对较低的温度下将挥发性有机物转化为水和二氧化碳无害物质的最经济有效的方法。在多孔材料上负载贵金属和/或过渡金属氧化物催化剂和直接制备介孔催化剂是获得有效催化氧化VOCs催化剂的两种有效途径。综述了贵金属基和过渡金属氧化物基介孔催化剂的制备方法、它们催化氧化挥发性有机物的反应机理、催化剂的失活/再生以及这些催化剂在去除挥发性有机物中的应用。它有望为设计、制备和应用具有优异活性、高稳定性和低成本的高效中孔催化剂提供指导,用于在较低温度下去除挥发性有机物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications
Abstract Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Chemical Engineering
Reviews in Chemical Engineering 工程技术-工程:化工
CiteScore
12.30
自引率
0.00%
发文量
37
审稿时长
6 months
期刊介绍: Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信