跳跃(总体)过程的Kolmogorov前向方程的多项逼近

IF 0.1 Q4 MATHEMATICS
M. Natiello, Raúl H. Barriga, M. Otero, H. Solari
{"title":"跳跃(总体)过程的Kolmogorov前向方程的多项逼近","authors":"M. Natiello, Raúl H. Barriga, M. Otero, H. Solari","doi":"10.1080/25742558.2018.1556192","DOIUrl":null,"url":null,"abstract":"Abstract We develop a simulation method for Markov Jump processes with finite time steps based in a quasilinear approximation of the process and in multinomial random deviates. The second-order approximation to the generating function, Error = O(dt2), is developed in detail and an algorithm is presented. The algorithm is implemented for a Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic model and compared to both the deterministic approximation and the exact simulation. Special attention is given to the problem of extinction of the infected population which is the most critical condition for the approximation.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2018.1556192","citationCount":"2","resultStr":"{\"title\":\"Multinomial approximation to the Kolmogorov Forward Equation for jump (population) processes\",\"authors\":\"M. Natiello, Raúl H. Barriga, M. Otero, H. Solari\",\"doi\":\"10.1080/25742558.2018.1556192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a simulation method for Markov Jump processes with finite time steps based in a quasilinear approximation of the process and in multinomial random deviates. The second-order approximation to the generating function, Error = O(dt2), is developed in detail and an algorithm is presented. The algorithm is implemented for a Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic model and compared to both the deterministic approximation and the exact simulation. Special attention is given to the problem of extinction of the infected population which is the most critical condition for the approximation.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2018.1556192\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2018.1556192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2018.1556192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们在过程的拟线性近似和多项式随机偏差的基础上,发展了一种具有有限时间步长的马尔可夫跳跃过程的模拟方法。详细推导了生成函数Error=O(dt2)的二阶近似,并给出了算法。该算法是针对易感感染恢复易感(SIRS)流行病模型实现的,并与确定性近似和精确模拟进行了比较。特别注意感染人群的灭绝问题,这是近似的最关键条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multinomial approximation to the Kolmogorov Forward Equation for jump (population) processes
Abstract We develop a simulation method for Markov Jump processes with finite time steps based in a quasilinear approximation of the process and in multinomial random deviates. The second-order approximation to the generating function, Error = O(dt2), is developed in detail and an algorithm is presented. The algorithm is implemented for a Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic model and compared to both the deterministic approximation and the exact simulation. Special attention is given to the problem of extinction of the infected population which is the most critical condition for the approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信