Noora Jamal Ali, Noor Amer Hamzah, Alaa Majeed Ali, Poh Soon JosephNg, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi
{"title":"基于5G的IoMT业务质量提升的智能途径","authors":"Noora Jamal Ali, Noor Amer Hamzah, Alaa Majeed Ali, Poh Soon JosephNg, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi","doi":"10.21533/pen.v11i3.3576","DOIUrl":null,"url":null,"abstract":"The concept and growth of superior individualized healthcare technologies are influenced in significant ways by the rising areas of “Artificial Intelligence (AI) and the Internet of Things (IoT)”. Most people use wearable devices for mHealth, hence there are many potential applications for the “Internet of Medical Things (IoMT)”. Only 5G can provide the necessary support for smart medical devices to perform many different types of demanding computing activities. Today, heart disease was the major mortality on a global scale. For patients who need a greater accurate diagnosis and treatment, the advancement of medical innovation has created new obstacles. Although many studies have focused on diagnosing cardiac disease, the findings are often inaccurate and fail to fulfill patients' expectations of quality of service (QoS). So, this paper introduces a novel “feed-forward Bi-directional long-short term memory (FF-Bi-LSTM) algorithm to predict heart disease more accurately with enhanced QoS in IoMT based on 5G”. Linear discriminant analysis (LDA) and min-max normalization are employed, respectively, for preprocessing and feature extraction. Several measures, including precision, recall, accuracy, and f1-score, are used to the assess effectiveness of the suggested strategy. The proposed method also compared to certain existing techniques. These results show that the suggested strategy outperforms existing strategies in terms of improving QoS.","PeriodicalId":37519,"journal":{"name":"Periodicals of Engineering and Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An intelligent approach for enhancing the Quality of Service in IoMT based on 5G\",\"authors\":\"Noora Jamal Ali, Noor Amer Hamzah, Alaa Majeed Ali, Poh Soon JosephNg, Jamal Fadhil Tawfeq, Ahmed Dheyaa Radhi\",\"doi\":\"10.21533/pen.v11i3.3576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept and growth of superior individualized healthcare technologies are influenced in significant ways by the rising areas of “Artificial Intelligence (AI) and the Internet of Things (IoT)”. Most people use wearable devices for mHealth, hence there are many potential applications for the “Internet of Medical Things (IoMT)”. Only 5G can provide the necessary support for smart medical devices to perform many different types of demanding computing activities. Today, heart disease was the major mortality on a global scale. For patients who need a greater accurate diagnosis and treatment, the advancement of medical innovation has created new obstacles. Although many studies have focused on diagnosing cardiac disease, the findings are often inaccurate and fail to fulfill patients' expectations of quality of service (QoS). So, this paper introduces a novel “feed-forward Bi-directional long-short term memory (FF-Bi-LSTM) algorithm to predict heart disease more accurately with enhanced QoS in IoMT based on 5G”. Linear discriminant analysis (LDA) and min-max normalization are employed, respectively, for preprocessing and feature extraction. Several measures, including precision, recall, accuracy, and f1-score, are used to the assess effectiveness of the suggested strategy. The proposed method also compared to certain existing techniques. These results show that the suggested strategy outperforms existing strategies in terms of improving QoS.\",\"PeriodicalId\":37519,\"journal\":{\"name\":\"Periodicals of Engineering and Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicals of Engineering and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21533/pen.v11i3.3576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicals of Engineering and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21533/pen.v11i3.3576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
An intelligent approach for enhancing the Quality of Service in IoMT based on 5G
The concept and growth of superior individualized healthcare technologies are influenced in significant ways by the rising areas of “Artificial Intelligence (AI) and the Internet of Things (IoT)”. Most people use wearable devices for mHealth, hence there are many potential applications for the “Internet of Medical Things (IoMT)”. Only 5G can provide the necessary support for smart medical devices to perform many different types of demanding computing activities. Today, heart disease was the major mortality on a global scale. For patients who need a greater accurate diagnosis and treatment, the advancement of medical innovation has created new obstacles. Although many studies have focused on diagnosing cardiac disease, the findings are often inaccurate and fail to fulfill patients' expectations of quality of service (QoS). So, this paper introduces a novel “feed-forward Bi-directional long-short term memory (FF-Bi-LSTM) algorithm to predict heart disease more accurately with enhanced QoS in IoMT based on 5G”. Linear discriminant analysis (LDA) and min-max normalization are employed, respectively, for preprocessing and feature extraction. Several measures, including precision, recall, accuracy, and f1-score, are used to the assess effectiveness of the suggested strategy. The proposed method also compared to certain existing techniques. These results show that the suggested strategy outperforms existing strategies in terms of improving QoS.