{"title":"基于SAMURAI的前掠翼无人机不确定设计优化","authors":"J. Wauters","doi":"10.1177/17568293221092139","DOIUrl":null,"url":null,"abstract":"In this paper the design optimization-under-uncertainty of a forward swept wing (FSW) blended wing body (BWB) unmanned aerial vehicle (UAV) is examined. Conventional BWBs are often tailless, which leads to a backward swept wing to ensure longitudinal static stability. This in turn can induce flow separation at the tip, leading to a loss of lift, controllability and the appearance of a nose-up pitching moment. A possible solution to this problem is a conceptual redesign by introducing a forward swept wing, which is inherently free of tip-stall, but needs a careful design in order to be controllable. However, fixed wing UAVs are often produced by means of direct injection expanded foam moulding, which is characterized by not negligible production tolerances. This lead to a reliability-based robust design optimization problem, for which a novel framework is employed: SAMURAI. Firstly, the method accounts for computational cost by means of surrogate modelling, an analytical treatment of the problem and an asynchronous updating scheme that balances design space exploration and objective exploitation. Secondly, the method treats the problem as a multi-objective problem, which leads to a Pareto front of robust and reliable designs. The result is a novel series of UAV designs that are inherently free of tip stall, perform robustly and meet the stability requirements with the target reliability obtained with a computationally feasible budget.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design optimization-under-uncertainty of a forward swept wing unmanned aerial vehicle using SAMURAI\",\"authors\":\"J. Wauters\",\"doi\":\"10.1177/17568293221092139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the design optimization-under-uncertainty of a forward swept wing (FSW) blended wing body (BWB) unmanned aerial vehicle (UAV) is examined. Conventional BWBs are often tailless, which leads to a backward swept wing to ensure longitudinal static stability. This in turn can induce flow separation at the tip, leading to a loss of lift, controllability and the appearance of a nose-up pitching moment. A possible solution to this problem is a conceptual redesign by introducing a forward swept wing, which is inherently free of tip-stall, but needs a careful design in order to be controllable. However, fixed wing UAVs are often produced by means of direct injection expanded foam moulding, which is characterized by not negligible production tolerances. This lead to a reliability-based robust design optimization problem, for which a novel framework is employed: SAMURAI. Firstly, the method accounts for computational cost by means of surrogate modelling, an analytical treatment of the problem and an asynchronous updating scheme that balances design space exploration and objective exploitation. Secondly, the method treats the problem as a multi-objective problem, which leads to a Pareto front of robust and reliable designs. The result is a novel series of UAV designs that are inherently free of tip stall, perform robustly and meet the stability requirements with the target reliability obtained with a computationally feasible budget.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293221092139\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221092139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design optimization-under-uncertainty of a forward swept wing unmanned aerial vehicle using SAMURAI
In this paper the design optimization-under-uncertainty of a forward swept wing (FSW) blended wing body (BWB) unmanned aerial vehicle (UAV) is examined. Conventional BWBs are often tailless, which leads to a backward swept wing to ensure longitudinal static stability. This in turn can induce flow separation at the tip, leading to a loss of lift, controllability and the appearance of a nose-up pitching moment. A possible solution to this problem is a conceptual redesign by introducing a forward swept wing, which is inherently free of tip-stall, but needs a careful design in order to be controllable. However, fixed wing UAVs are often produced by means of direct injection expanded foam moulding, which is characterized by not negligible production tolerances. This lead to a reliability-based robust design optimization problem, for which a novel framework is employed: SAMURAI. Firstly, the method accounts for computational cost by means of surrogate modelling, an analytical treatment of the problem and an asynchronous updating scheme that balances design space exploration and objective exploitation. Secondly, the method treats the problem as a multi-objective problem, which leads to a Pareto front of robust and reliable designs. The result is a novel series of UAV designs that are inherently free of tip stall, perform robustly and meet the stability requirements with the target reliability obtained with a computationally feasible budget.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.