{"title":"非饱和湿陷性土土水特性曲线","authors":"Q. Al-Obaidi, T. Schanz","doi":"10.1515/jmbm-2022-0210","DOIUrl":null,"url":null,"abstract":"Abstract Collapsible soils are almost found in unsaturated states and involved significant engineering problems. Geotechnical challenges of such soils are represented by the hydro-mechanical behaviour during wetting–drying cycles due to the humidity and climate conditions. The main objective of this paper is to investigate the soil–water characteristic curve (SWCC) of unsaturated collapsible soils. In this study, three types of collapsible soils were investigated such as natural soils of sandy gypseous, silty loess, and artificial soil of gypsum–sand mixture. Determination of soil–water characteristic curve represented by wetting and drying paths has been done using a combination of the axis-translation technique (i.e. pressure plate device) and vapour equilibrium technique (i.e. salts solution desiccators) to cover a wide range of applied suction. The test results show that the air-entry value for all soils occurs at a very low suction range. At the boundary effect zone, the coarse grain size of the soil mass cannot hold the water molecules in the pore space, even with a low value of imposed suction. Moreover, the amount of hysteresis varied based on the geological formation and homogeneity of the soil fabric. Furthermore, SWCC has been interpreted by insignificant volume change and a slight reduction in void ratio, especially at high applied suction.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil–water characteristic curve of unsaturated collapsible soils\",\"authors\":\"Q. Al-Obaidi, T. Schanz\",\"doi\":\"10.1515/jmbm-2022-0210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Collapsible soils are almost found in unsaturated states and involved significant engineering problems. Geotechnical challenges of such soils are represented by the hydro-mechanical behaviour during wetting–drying cycles due to the humidity and climate conditions. The main objective of this paper is to investigate the soil–water characteristic curve (SWCC) of unsaturated collapsible soils. In this study, three types of collapsible soils were investigated such as natural soils of sandy gypseous, silty loess, and artificial soil of gypsum–sand mixture. Determination of soil–water characteristic curve represented by wetting and drying paths has been done using a combination of the axis-translation technique (i.e. pressure plate device) and vapour equilibrium technique (i.e. salts solution desiccators) to cover a wide range of applied suction. The test results show that the air-entry value for all soils occurs at a very low suction range. At the boundary effect zone, the coarse grain size of the soil mass cannot hold the water molecules in the pore space, even with a low value of imposed suction. Moreover, the amount of hysteresis varied based on the geological formation and homogeneity of the soil fabric. Furthermore, SWCC has been interpreted by insignificant volume change and a slight reduction in void ratio, especially at high applied suction.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Soil–water characteristic curve of unsaturated collapsible soils
Abstract Collapsible soils are almost found in unsaturated states and involved significant engineering problems. Geotechnical challenges of such soils are represented by the hydro-mechanical behaviour during wetting–drying cycles due to the humidity and climate conditions. The main objective of this paper is to investigate the soil–water characteristic curve (SWCC) of unsaturated collapsible soils. In this study, three types of collapsible soils were investigated such as natural soils of sandy gypseous, silty loess, and artificial soil of gypsum–sand mixture. Determination of soil–water characteristic curve represented by wetting and drying paths has been done using a combination of the axis-translation technique (i.e. pressure plate device) and vapour equilibrium technique (i.e. salts solution desiccators) to cover a wide range of applied suction. The test results show that the air-entry value for all soils occurs at a very low suction range. At the boundary effect zone, the coarse grain size of the soil mass cannot hold the water molecules in the pore space, even with a low value of imposed suction. Moreover, the amount of hysteresis varied based on the geological formation and homogeneity of the soil fabric. Furthermore, SWCC has been interpreted by insignificant volume change and a slight reduction in void ratio, especially at high applied suction.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.