谷歌地球引擎在陆地卫星图像处理和评估lulc分类在西南cÔte科特迪瓦

Q4 Earth and Planetary Sciences
Ch. Kouassi, Chen Qian, D. Khan, L. Achille, Zhang Kebin, J. K. Omifolaji, Xiaohui Yang
{"title":"谷歌地球引擎在陆地卫星图像处理和评估lulc分类在西南cÔte科特迪瓦","authors":"Ch. Kouassi, Chen Qian, D. Khan, L. Achille, Zhang Kebin, J. K. Omifolaji, Xiaohui Yang","doi":"10.3846/gac.2023.16805","DOIUrl":null,"url":null,"abstract":"High-accuracy land use and land cover maps (LULC) are increasingly in demand for environmental management and decision-making. Despite the limitation, Machine learning classifiers (MLC) fill the gap in any complex issue related to LULC data accuracy. Visualizing land-cover information is critical in mitigating Côte d’Ivoire’s deforestation and land use planning using the Google Earth Engine (GEE) software. This paper estimates the probability of RF classification in South Western Côte d’Ivoire. Landsat 8 Surface Reflectance Tiers 1 (L8OLI/TIRS) data with a resolution of 30 mn for 2020 were used to classify the western and southwestern Forest areas of Côte d’Ivoire. The Random Forest (RF) learning classifier was calibrated using 80% training data and 20% testing data to assess GEE classification accuracy performance. The findings indicate that the Forest land class accounts for 39.48% of the entire study area, followed by the Bareland class, the Cultivated land class 21.28±0.90%, the Water class 1.94±0.27%, and the 0.96±0.60% Urban class respectively. The classification reliability test results show that 99.85%±1.95 is the overall training accuracy (OTA), and 99.81±1.95% for the training kappa (TK). The overall validation accuracy (VOA) is 94.02±1.90%, while 92.25±1.88% validation kappa (VK) and 92.45±1.88% RF Accuracy. The different coefficients classification accuracy results obtained from the RF confusion matrix indicate that each class has three good performances. This is due to the cultivated land samples lower spatial resolution and smaller sample numbers, resulting in a lower PA for this class than for the other classes. All had producer accuracy (PA) and user accuracy (UA) more than 90% using the L8OLI/TIRS data. Using the RF-based classification method integrated into the GEE provides an efficient and high scores accuracy for classifying land use and land cover in the study area.","PeriodicalId":35691,"journal":{"name":"Geodeziya i Kartografiya","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GOOGLE EARTH ENGINE FOR LANDSAT IMAGE PROCESSING AND ASSESSING LULC CLASSIFICATION IN SOUTHWESTERN CÔTE D’IVOIRE\",\"authors\":\"Ch. Kouassi, Chen Qian, D. Khan, L. Achille, Zhang Kebin, J. K. Omifolaji, Xiaohui Yang\",\"doi\":\"10.3846/gac.2023.16805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-accuracy land use and land cover maps (LULC) are increasingly in demand for environmental management and decision-making. Despite the limitation, Machine learning classifiers (MLC) fill the gap in any complex issue related to LULC data accuracy. Visualizing land-cover information is critical in mitigating Côte d’Ivoire’s deforestation and land use planning using the Google Earth Engine (GEE) software. This paper estimates the probability of RF classification in South Western Côte d’Ivoire. Landsat 8 Surface Reflectance Tiers 1 (L8OLI/TIRS) data with a resolution of 30 mn for 2020 were used to classify the western and southwestern Forest areas of Côte d’Ivoire. The Random Forest (RF) learning classifier was calibrated using 80% training data and 20% testing data to assess GEE classification accuracy performance. The findings indicate that the Forest land class accounts for 39.48% of the entire study area, followed by the Bareland class, the Cultivated land class 21.28±0.90%, the Water class 1.94±0.27%, and the 0.96±0.60% Urban class respectively. The classification reliability test results show that 99.85%±1.95 is the overall training accuracy (OTA), and 99.81±1.95% for the training kappa (TK). The overall validation accuracy (VOA) is 94.02±1.90%, while 92.25±1.88% validation kappa (VK) and 92.45±1.88% RF Accuracy. The different coefficients classification accuracy results obtained from the RF confusion matrix indicate that each class has three good performances. This is due to the cultivated land samples lower spatial resolution and smaller sample numbers, resulting in a lower PA for this class than for the other classes. All had producer accuracy (PA) and user accuracy (UA) more than 90% using the L8OLI/TIRS data. Using the RF-based classification method integrated into the GEE provides an efficient and high scores accuracy for classifying land use and land cover in the study area.\",\"PeriodicalId\":35691,\"journal\":{\"name\":\"Geodeziya i Kartografiya\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodeziya i Kartografiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/gac.2023.16805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodeziya i Kartografiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/gac.2023.16805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

摘要

环境管理和决策对高精度土地利用和土地覆盖图的需求越来越大。尽管存在局限性,但机器学习分类器(MLC)填补了与LULC数据准确性相关的任何复杂问题的空白。可视化土地覆盖信息对于使用谷歌地球引擎软件减少科特迪瓦的森林砍伐和土地利用规划至关重要。本文估计了在科特迪瓦西南部进行射频分类的可能性。2020年分辨率为3000万的陆地卫星8号地表反射层1(L8OLI/TIRS)数据用于对科特迪瓦西部和西南部森林地区进行分类。随机森林(RF)学习分类器使用80%的训练数据和20%的测试数据进行校准,以评估GEE分类的准确性性能。研究结果表明,林地类占整个研究区域的39.48%,其次是裸地类、耕地类21.28±0.90%、水类1.94±0.27%和城市类0.96±0.60%。分类可靠性测试结果表明,总训练准确率(OTA)为99.85%±1.95,训练kappa(TK)为99.81±1.95%。总体验证准确度(VOA)为94.02±1.90%,验证kappa(VK)为92.25±1.88%,RF准确度为92.45±1.88%。从RF混淆矩阵获得的不同系数分类精度结果表明,每个类别具有三个良好的性能。这是由于耕地样本的空间分辨率较低,样本数量较少,导致该类别的PA低于其他类别。使用L8OLI/TIRS数据,所有人的生产者准确度(PA)和用户准确度(UA)均超过90%。将基于RF的分类方法集成到GEE中,为研究区域的土地利用和土地覆盖分类提供了高效且高分的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GOOGLE EARTH ENGINE FOR LANDSAT IMAGE PROCESSING AND ASSESSING LULC CLASSIFICATION IN SOUTHWESTERN CÔTE D’IVOIRE
High-accuracy land use and land cover maps (LULC) are increasingly in demand for environmental management and decision-making. Despite the limitation, Machine learning classifiers (MLC) fill the gap in any complex issue related to LULC data accuracy. Visualizing land-cover information is critical in mitigating Côte d’Ivoire’s deforestation and land use planning using the Google Earth Engine (GEE) software. This paper estimates the probability of RF classification in South Western Côte d’Ivoire. Landsat 8 Surface Reflectance Tiers 1 (L8OLI/TIRS) data with a resolution of 30 mn for 2020 were used to classify the western and southwestern Forest areas of Côte d’Ivoire. The Random Forest (RF) learning classifier was calibrated using 80% training data and 20% testing data to assess GEE classification accuracy performance. The findings indicate that the Forest land class accounts for 39.48% of the entire study area, followed by the Bareland class, the Cultivated land class 21.28±0.90%, the Water class 1.94±0.27%, and the 0.96±0.60% Urban class respectively. The classification reliability test results show that 99.85%±1.95 is the overall training accuracy (OTA), and 99.81±1.95% for the training kappa (TK). The overall validation accuracy (VOA) is 94.02±1.90%, while 92.25±1.88% validation kappa (VK) and 92.45±1.88% RF Accuracy. The different coefficients classification accuracy results obtained from the RF confusion matrix indicate that each class has three good performances. This is due to the cultivated land samples lower spatial resolution and smaller sample numbers, resulting in a lower PA for this class than for the other classes. All had producer accuracy (PA) and user accuracy (UA) more than 90% using the L8OLI/TIRS data. Using the RF-based classification method integrated into the GEE provides an efficient and high scores accuracy for classifying land use and land cover in the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodeziya i Kartografiya
Geodeziya i Kartografiya Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
0.60
自引率
0.00%
发文量
73
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信