线性代数中的结理论:Trip矩阵的一个例子

Q4 Social Sciences
Molly A. Moran, Jessica Schenkman
{"title":"线性代数中的结理论:Trip矩阵的一个例子","authors":"Molly A. Moran, Jessica Schenkman","doi":"10.1080/07468342.2023.2201163","DOIUrl":null,"url":null,"abstract":"Summary The trip matrix, introduced by Louis Zulli [6], gives a method for computing the Jones polynomial of a knot using basic Linear Algebra. We use this method to provide an alternative proof of the formula for the Jones polynomial of torus knots. In doing so, we provide a partial solution to an open question related to finding an elementary proof of the formula for general torus knots.","PeriodicalId":38710,"journal":{"name":"College Mathematics Journal","volume":"54 1","pages":"186 - 194"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knot Theory in Linear Algebra: An Example with Trip Matrices\",\"authors\":\"Molly A. Moran, Jessica Schenkman\",\"doi\":\"10.1080/07468342.2023.2201163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The trip matrix, introduced by Louis Zulli [6], gives a method for computing the Jones polynomial of a knot using basic Linear Algebra. We use this method to provide an alternative proof of the formula for the Jones polynomial of torus knots. In doing so, we provide a partial solution to an open question related to finding an elementary proof of the formula for general torus knots.\",\"PeriodicalId\":38710,\"journal\":{\"name\":\"College Mathematics Journal\",\"volume\":\"54 1\",\"pages\":\"186 - 194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"College Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07468342.2023.2201163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"College Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07468342.2023.2201163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

由Louis Zulli[6]引入的行程矩阵给出了一种用基本线性代数计算结的琼斯多项式的方法。我们用这种方法提供了环面结的琼斯多项式公式的另一种证明。在这样做的过程中,我们提供了一个与寻找一般环面节公式的初等证明有关的开放问题的部分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knot Theory in Linear Algebra: An Example with Trip Matrices
Summary The trip matrix, introduced by Louis Zulli [6], gives a method for computing the Jones polynomial of a knot using basic Linear Algebra. We use this method to provide an alternative proof of the formula for the Jones polynomial of torus knots. In doing so, we provide a partial solution to an open question related to finding an elementary proof of the formula for general torus knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
College Mathematics Journal
College Mathematics Journal Social Sciences-Education
CiteScore
0.20
自引率
0.00%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信