{"title":"使用利浩特实时寻北传感器在gps拒绝环境下无缝导航","authors":"Shlomi Voro, Itamar Lavidor","doi":"10.1515/aon-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a new type of north finding sensor. The passive optical sensor captures images of the sky at a high frame rate and analyzes them into a polarized map of the sky with a high degree of accuracy. The sensor operates in real time, under various weather and atmospheric conditions. The sensor output shows high heading accuracy relative to the celestial true north. Based upon the NAS-14V2 astronomical method of navigation, it is possible to define the sensor global position on earth.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"26 1","pages":"92 - 97"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seamless Navigation in GPS-denied environment using Lirhot’s Real time North finding sensor\",\"authors\":\"Shlomi Voro, Itamar Lavidor\",\"doi\":\"10.1515/aon-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a new type of north finding sensor. The passive optical sensor captures images of the sky at a high frame rate and analyzes them into a polarized map of the sky with a high degree of accuracy. The sensor operates in real time, under various weather and atmospheric conditions. The sensor output shows high heading accuracy relative to the celestial true north. Based upon the NAS-14V2 astronomical method of navigation, it is possible to define the sensor global position on earth.\",\"PeriodicalId\":30601,\"journal\":{\"name\":\"Annual of Navigation\",\"volume\":\"26 1\",\"pages\":\"92 - 97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aon-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aon-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seamless Navigation in GPS-denied environment using Lirhot’s Real time North finding sensor
Abstract This paper presents a new type of north finding sensor. The passive optical sensor captures images of the sky at a high frame rate and analyzes them into a polarized map of the sky with a high degree of accuracy. The sensor operates in real time, under various weather and atmospheric conditions. The sensor output shows high heading accuracy relative to the celestial true north. Based upon the NAS-14V2 astronomical method of navigation, it is possible to define the sensor global position on earth.