强化学习主体的时间与行动协同训练

Ashlesha Akella, Chin-Teng Lin
{"title":"强化学习主体的时间与行动协同训练","authors":"Ashlesha Akella, Chin-Teng Lin","doi":"10.3389/fcteg.2021.722092","DOIUrl":null,"url":null,"abstract":"In formation control, a robot (or an agent) learns to align itself in a particular spatial alignment. However, in a few scenarios, it is also vital to learn temporal alignment along with spatial alignment. An effective control system encompasses flexibility, precision, and timeliness. Existing reinforcement learning algorithms excel at learning to select an action given a state. However, executing an optimal action at an appropriate time remains challenging. Building a reinforcement learning agent which can learn an optimal time to act along with an optimal action can address this challenge. Neural networks in which timing relies on dynamic changes in the activity of population neurons have been shown to be a more effective representation of time. In this work, we trained a reinforcement learning agent to create its representation of time using a neural network with a population of recurrently connected nonlinear firing rate neurons. Trained using a reward-based recursive least square algorithm, the agent learned to produce a neural trajectory that peaks at the “time-to-act”; thus, it learns “when” to act. A few control system applications also require the agent to temporally scale its action. We trained the agent so that it could temporally scale its action for different speed inputs. Furthermore, given one state, the agent could learn to plan multiple future actions, that is, multiple times to act without needing to observe a new state.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time and Action Co-Training in Reinforcement Learning Agents\",\"authors\":\"Ashlesha Akella, Chin-Teng Lin\",\"doi\":\"10.3389/fcteg.2021.722092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In formation control, a robot (or an agent) learns to align itself in a particular spatial alignment. However, in a few scenarios, it is also vital to learn temporal alignment along with spatial alignment. An effective control system encompasses flexibility, precision, and timeliness. Existing reinforcement learning algorithms excel at learning to select an action given a state. However, executing an optimal action at an appropriate time remains challenging. Building a reinforcement learning agent which can learn an optimal time to act along with an optimal action can address this challenge. Neural networks in which timing relies on dynamic changes in the activity of population neurons have been shown to be a more effective representation of time. In this work, we trained a reinforcement learning agent to create its representation of time using a neural network with a population of recurrently connected nonlinear firing rate neurons. Trained using a reward-based recursive least square algorithm, the agent learned to produce a neural trajectory that peaks at the “time-to-act”; thus, it learns “when” to act. A few control system applications also require the agent to temporally scale its action. We trained the agent so that it could temporally scale its action for different speed inputs. Furthermore, given one state, the agent could learn to plan multiple future actions, that is, multiple times to act without needing to observe a new state.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2021.722092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2021.722092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在编队控制中,机器人(或代理)学会在特定的空间对齐中对齐自己。然而,在少数情况下,学习时间对齐和空间对齐也是至关重要的。一个有效的控制系统包括灵活性、准确性和及时性。现有的强化学习算法擅长于学习在给定状态下选择动作。然而,在适当的时间执行最佳操作仍然具有挑战性。构建一个强化学习代理,它可以在最佳行动的同时学习最佳行动时间,可以解决这一挑战。时间依赖于群体神经元活动的动态变化的神经网络已被证明是时间的更有效表示。在这项工作中,我们训练了一个强化学习代理,使用具有递归连接的非线性放电率神经元群体的神经网络来创建其时间表示。该智能体使用基于奖励的递归最小二乘算法进行训练,学会产生在“行动时间”达到峰值的神经轨迹;因此,它学会了“何时”行动。一些控制系统应用程序还要求代理在时间上缩放其动作。我们训练了代理,使其能够根据不同的速度输入在时间上缩放其动作。此外,在给定一种状态的情况下,代理可以学会规划多个未来行动,也就是说,多次行动而不需要观察新的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time and Action Co-Training in Reinforcement Learning Agents
In formation control, a robot (or an agent) learns to align itself in a particular spatial alignment. However, in a few scenarios, it is also vital to learn temporal alignment along with spatial alignment. An effective control system encompasses flexibility, precision, and timeliness. Existing reinforcement learning algorithms excel at learning to select an action given a state. However, executing an optimal action at an appropriate time remains challenging. Building a reinforcement learning agent which can learn an optimal time to act along with an optimal action can address this challenge. Neural networks in which timing relies on dynamic changes in the activity of population neurons have been shown to be a more effective representation of time. In this work, we trained a reinforcement learning agent to create its representation of time using a neural network with a population of recurrently connected nonlinear firing rate neurons. Trained using a reward-based recursive least square algorithm, the agent learned to produce a neural trajectory that peaks at the “time-to-act”; thus, it learns “when” to act. A few control system applications also require the agent to temporally scale its action. We trained the agent so that it could temporally scale its action for different speed inputs. Furthermore, given one state, the agent could learn to plan multiple future actions, that is, multiple times to act without needing to observe a new state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信