{"title":"二氧化硅气凝胶作为燃烧室内衬隔热材料的实验评价","authors":"Yeongmin Pyo, T. Robertson, Sean Yun, Zekai Hong","doi":"10.33737/gpps20-tc-46","DOIUrl":null,"url":null,"abstract":"An experimental study was conducted for evaluating the feasibility of using silica aerogel as thermal insulator for combustor liners. Aerogels are a superior material for minimizing heat flux to the metal structure of the combustion liner due to their low thermal conductivity. In this study, a conical natural gas fired swirling-flame combustor was utilized for reproducing the combustion environment. The silica aerogel blanket was attached to the inner side of a perforated combustor liner. Temperature distribution on the outer side of the combustion liner was measured using a calibrated IR camera. To create a protective cooling film over the aerogel surface, cooling air was supplied from the back side of the perforated metal liner and was allowed to penetrate the silica aerogel blanket to be discharged to the combustor. As the combustor was operated at a fixed equivalence ratio of 0.83, cooling air flow rates were varied to evaluate the effectiveness of transpiration cooling on the aerogel blanket as various cooling flow rates. \n\nThe measured evolution of temperature distribution confirmed thermal equilibriums for every test condition with transpiration cooling. The measured temperature distribution of metal liner demonstrated superior thermal insulation of aerogel blanket under the protection of cooling film with a temperature difference as high as 1580 K between combustion products temperature and the metal liner temperature on the back side. In addition, silica aerogel samples were examined before and after the combustion tests to understand their material degradation exposing to a typical gas turbine combustor environment using high-resolution scanning electron microscope (SEM). Test results suggest multiple degradation mechanisms to the silica aerogel blanket samples from the combustion tests. Improvements can be made to the silica aerogel blankets for a more resilient thermal insulator, for example, by replacing glass fibers in silica aerogels.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Evaluation of Using Silica Aerogels as the Thermal Insulator for Combustor Liners\",\"authors\":\"Yeongmin Pyo, T. Robertson, Sean Yun, Zekai Hong\",\"doi\":\"10.33737/gpps20-tc-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental study was conducted for evaluating the feasibility of using silica aerogel as thermal insulator for combustor liners. Aerogels are a superior material for minimizing heat flux to the metal structure of the combustion liner due to their low thermal conductivity. In this study, a conical natural gas fired swirling-flame combustor was utilized for reproducing the combustion environment. The silica aerogel blanket was attached to the inner side of a perforated combustor liner. Temperature distribution on the outer side of the combustion liner was measured using a calibrated IR camera. To create a protective cooling film over the aerogel surface, cooling air was supplied from the back side of the perforated metal liner and was allowed to penetrate the silica aerogel blanket to be discharged to the combustor. As the combustor was operated at a fixed equivalence ratio of 0.83, cooling air flow rates were varied to evaluate the effectiveness of transpiration cooling on the aerogel blanket as various cooling flow rates. \\n\\nThe measured evolution of temperature distribution confirmed thermal equilibriums for every test condition with transpiration cooling. The measured temperature distribution of metal liner demonstrated superior thermal insulation of aerogel blanket under the protection of cooling film with a temperature difference as high as 1580 K between combustion products temperature and the metal liner temperature on the back side. In addition, silica aerogel samples were examined before and after the combustion tests to understand their material degradation exposing to a typical gas turbine combustor environment using high-resolution scanning electron microscope (SEM). Test results suggest multiple degradation mechanisms to the silica aerogel blanket samples from the combustion tests. Improvements can be made to the silica aerogel blankets for a more resilient thermal insulator, for example, by replacing glass fibers in silica aerogels.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/gpps20-tc-46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/gpps20-tc-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental Evaluation of Using Silica Aerogels as the Thermal Insulator for Combustor Liners
An experimental study was conducted for evaluating the feasibility of using silica aerogel as thermal insulator for combustor liners. Aerogels are a superior material for minimizing heat flux to the metal structure of the combustion liner due to their low thermal conductivity. In this study, a conical natural gas fired swirling-flame combustor was utilized for reproducing the combustion environment. The silica aerogel blanket was attached to the inner side of a perforated combustor liner. Temperature distribution on the outer side of the combustion liner was measured using a calibrated IR camera. To create a protective cooling film over the aerogel surface, cooling air was supplied from the back side of the perforated metal liner and was allowed to penetrate the silica aerogel blanket to be discharged to the combustor. As the combustor was operated at a fixed equivalence ratio of 0.83, cooling air flow rates were varied to evaluate the effectiveness of transpiration cooling on the aerogel blanket as various cooling flow rates.
The measured evolution of temperature distribution confirmed thermal equilibriums for every test condition with transpiration cooling. The measured temperature distribution of metal liner demonstrated superior thermal insulation of aerogel blanket under the protection of cooling film with a temperature difference as high as 1580 K between combustion products temperature and the metal liner temperature on the back side. In addition, silica aerogel samples were examined before and after the combustion tests to understand their material degradation exposing to a typical gas turbine combustor environment using high-resolution scanning electron microscope (SEM). Test results suggest multiple degradation mechanisms to the silica aerogel blanket samples from the combustion tests. Improvements can be made to the silica aerogel blankets for a more resilient thermal insulator, for example, by replacing glass fibers in silica aerogels.