Esther Ulitzsch, S. Pohl, Lale Khorramdel, Ulf Kroehne, Matthias von Davier
{"title":"用反应时间联合建模粗心反应和注意反应风格","authors":"Esther Ulitzsch, S. Pohl, Lale Khorramdel, Ulf Kroehne, Matthias von Davier","doi":"10.3102/10769986231173607","DOIUrl":null,"url":null,"abstract":"Questionnaires are by far the most common tool for measuring noncognitive constructs in psychology and educational sciences. Response bias may pose an additional source of variation between respondents that threatens validity of conclusions drawn from questionnaire data. We present a mixture modeling approach that leverages response time data from computer-administered questionnaires for the joint identification and modeling of two commonly encountered response bias that, so far, have only been modeled separately—careless and insufficient effort responding and response styles (RS) in attentive answering. Using empirical data from the Programme for International Student Assessment 2015 background questionnaire and the case of extreme RS as an example, we illustrate how the proposed approach supports gaining a more nuanced understanding of response behavior as well as how neglecting either type of response bias may impact conclusions on respondents’ content trait levels as well as on their displayed response behavior. We further contrast the proposed approach against a more heuristic two-step procedure that first eliminates presumed careless respondents from the data and subsequently applies model-based approaches accommodating RS. To investigate the trustworthiness of results obtained in the empirical application, we conduct a parameter recovery study.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Response Times for Joint Modeling of Careless Responding and Attentive Response Styles\",\"authors\":\"Esther Ulitzsch, S. Pohl, Lale Khorramdel, Ulf Kroehne, Matthias von Davier\",\"doi\":\"10.3102/10769986231173607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Questionnaires are by far the most common tool for measuring noncognitive constructs in psychology and educational sciences. Response bias may pose an additional source of variation between respondents that threatens validity of conclusions drawn from questionnaire data. We present a mixture modeling approach that leverages response time data from computer-administered questionnaires for the joint identification and modeling of two commonly encountered response bias that, so far, have only been modeled separately—careless and insufficient effort responding and response styles (RS) in attentive answering. Using empirical data from the Programme for International Student Assessment 2015 background questionnaire and the case of extreme RS as an example, we illustrate how the proposed approach supports gaining a more nuanced understanding of response behavior as well as how neglecting either type of response bias may impact conclusions on respondents’ content trait levels as well as on their displayed response behavior. We further contrast the proposed approach against a more heuristic two-step procedure that first eliminates presumed careless respondents from the data and subsequently applies model-based approaches accommodating RS. To investigate the trustworthiness of results obtained in the empirical application, we conduct a parameter recovery study.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986231173607\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231173607","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Using Response Times for Joint Modeling of Careless Responding and Attentive Response Styles
Questionnaires are by far the most common tool for measuring noncognitive constructs in psychology and educational sciences. Response bias may pose an additional source of variation between respondents that threatens validity of conclusions drawn from questionnaire data. We present a mixture modeling approach that leverages response time data from computer-administered questionnaires for the joint identification and modeling of two commonly encountered response bias that, so far, have only been modeled separately—careless and insufficient effort responding and response styles (RS) in attentive answering. Using empirical data from the Programme for International Student Assessment 2015 background questionnaire and the case of extreme RS as an example, we illustrate how the proposed approach supports gaining a more nuanced understanding of response behavior as well as how neglecting either type of response bias may impact conclusions on respondents’ content trait levels as well as on their displayed response behavior. We further contrast the proposed approach against a more heuristic two-step procedure that first eliminates presumed careless respondents from the data and subsequently applies model-based approaches accommodating RS. To investigate the trustworthiness of results obtained in the empirical application, we conduct a parameter recovery study.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.