Fock–Goncharov坐标系中的扩展Goldman辛结构

IF 1.3 1区 数学 Q1 MATHEMATICS
M. Bertola, D. Korotkin
{"title":"Fock–Goncharov坐标系中的扩展Goldman辛结构","authors":"M. Bertola, D. Korotkin","doi":"10.4310/jdg/1689262061","DOIUrl":null,"url":null,"abstract":"Given an oriented graph on a punctured Riemann surface of arbitrary genus, we define a canonical symplectic structure over the set of flat connections on the dual graph, and show that it is invariant under natural transformations. We use this notion to identify the canonical non-degenerate extension of Goldman's symplectic form on the $SL(n)$ character variety with a the form associated to a suitable graph. Using the invariance of the form under natural moves, we utilize the parametrization of the character variety in terms of Fock--Goncharov coordinates and associate to it a canonical decorated triangulation. This allows us to show that these coordinates are log--canonical for the extended Goldman Poisson structure.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Extended Goldman symplectic structure in Fock–Goncharov coordinates\",\"authors\":\"M. Bertola, D. Korotkin\",\"doi\":\"10.4310/jdg/1689262061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an oriented graph on a punctured Riemann surface of arbitrary genus, we define a canonical symplectic structure over the set of flat connections on the dual graph, and show that it is invariant under natural transformations. We use this notion to identify the canonical non-degenerate extension of Goldman's symplectic form on the $SL(n)$ character variety with a the form associated to a suitable graph. Using the invariance of the form under natural moves, we utilize the parametrization of the character variety in terms of Fock--Goncharov coordinates and associate to it a canonical decorated triangulation. This allows us to show that these coordinates are log--canonical for the extended Goldman Poisson structure.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1689262061\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1689262061","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

给出了任意属的穿孔黎曼曲面上的一个有向图,在对偶图上的平面连接集合上定义了一个正则辛结构,并证明了它在自然变换下是不变的。我们利用这一概念,在$SL(n)$字符变化上,用与一个合适图相关联的形式,确定了Goldman的辛形式的正则非退化扩展。利用自然运动下形式的不变性,我们利用Fock—Goncharov坐标的特征变化参数化,并将其关联到一个规范的装饰三角剖分。这使我们能够证明这些坐标对于扩展的高盛泊松结构是对数规范的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Goldman symplectic structure in Fock–Goncharov coordinates
Given an oriented graph on a punctured Riemann surface of arbitrary genus, we define a canonical symplectic structure over the set of flat connections on the dual graph, and show that it is invariant under natural transformations. We use this notion to identify the canonical non-degenerate extension of Goldman's symplectic form on the $SL(n)$ character variety with a the form associated to a suitable graph. Using the invariance of the form under natural moves, we utilize the parametrization of the character variety in terms of Fock--Goncharov coordinates and associate to it a canonical decorated triangulation. This allows us to show that these coordinates are log--canonical for the extended Goldman Poisson structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信