二阶虚K -有理Drinfeld模的参数化

Pub Date : 2019-10-31 DOI:10.7169/facm/1905
Y. Okumura
{"title":"二阶虚K -有理Drinfeld模的参数化","authors":"Y. Okumura","doi":"10.7169/facm/1905","DOIUrl":null,"url":null,"abstract":"For an extension $K/\\mathbb{F}_q(T)$ of the rational function field over a finite field, we introduce the notion of virtually $K$-rational Drinfeld modules as a function field analogue of $\\mathbb{Q}$-curves. Our goal in this article is to prove that all virtually $K$-rational Drinfeld modules of rank two with no complex multiplication are parametrized up to isogeny by $K$-rational points of a quotient curve of the Drinfeld modular curve $Y_0(\\mathfrak{n})$ with some square-free level $\\mathfrak{n}$. This is an analogue of Elkies' well-known result on $\\mathbb{Q}$-curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametrization of virtually $K$-rational Drinfeld modules of rank two\",\"authors\":\"Y. Okumura\",\"doi\":\"10.7169/facm/1905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an extension $K/\\\\mathbb{F}_q(T)$ of the rational function field over a finite field, we introduce the notion of virtually $K$-rational Drinfeld modules as a function field analogue of $\\\\mathbb{Q}$-curves. Our goal in this article is to prove that all virtually $K$-rational Drinfeld modules of rank two with no complex multiplication are parametrized up to isogeny by $K$-rational points of a quotient curve of the Drinfeld modular curve $Y_0(\\\\mathfrak{n})$ with some square-free level $\\\\mathfrak{n}$. This is an analogue of Elkies' well-known result on $\\\\mathbb{Q}$-curves.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于扩展$K/\mathbb{F}_q(T) $的有理函数域,我们引入了虚拟$K$-有理Drinfeld模的概念,作为$\mathbb{Q}$-曲线的函数域模拟。我们在这篇文章中的目标是证明所有没有复数乘法的秩为2的几乎$K$-有理Drinfeld模都是由具有一些平方自由水平$\mathfrak{n}$的Drinfeld模块曲线$Y_0(\mathfrak{n})$的商曲线的$K$-rational点参数化到同根的。这与Elkies在$\mathbb{Q}$-曲线上的著名结果类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Parametrization of virtually $K$-rational Drinfeld modules of rank two
For an extension $K/\mathbb{F}_q(T)$ of the rational function field over a finite field, we introduce the notion of virtually $K$-rational Drinfeld modules as a function field analogue of $\mathbb{Q}$-curves. Our goal in this article is to prove that all virtually $K$-rational Drinfeld modules of rank two with no complex multiplication are parametrized up to isogeny by $K$-rational points of a quotient curve of the Drinfeld modular curve $Y_0(\mathfrak{n})$ with some square-free level $\mathfrak{n}$. This is an analogue of Elkies' well-known result on $\mathbb{Q}$-curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信