关于Holder型不等式的新的积分结果

Q4 Mathematics
Abdelkader Benzidane, H. Yaldiz, Z. Dahmani
{"title":"关于Holder型不等式的新的积分结果","authors":"Abdelkader Benzidane, H. Yaldiz, Z. Dahmani","doi":"10.24193/MATHCLUJ.2019.1.02","DOIUrl":null,"url":null,"abstract":"In this paper, using fractional integration, we present new fractional integral inequalities related to Holder inequality. We generalise a Wu’s sharpness of Holder inequality for p, q integration. Then, as an application, we propose another way to derive the Holder inequality which is already established by Z. Dahmani on 2012 in General Math. Journal. Also, for our results, the classical Holder inequality is deduced as a special case. MSC 2010. 26D15, 26A33, 60E15.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New integral results on Holder type inequalities\",\"authors\":\"Abdelkader Benzidane, H. Yaldiz, Z. Dahmani\",\"doi\":\"10.24193/MATHCLUJ.2019.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using fractional integration, we present new fractional integral inequalities related to Holder inequality. We generalise a Wu’s sharpness of Holder inequality for p, q integration. Then, as an application, we propose another way to derive the Holder inequality which is already established by Z. Dahmani on 2012 in General Math. Journal. Also, for our results, the classical Holder inequality is deduced as a special case. MSC 2010. 26D15, 26A33, 60E15.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/MATHCLUJ.2019.1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/MATHCLUJ.2019.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文利用分数阶积分,给出了与Holder不等式相关的新的分数阶积分不等式。我们推广了p, q积分中Holder不等式的一个Wu的锐度。然后,作为应用,我们提出了另一种方法来推导Z. Dahmani在2012年《普通数学》中已经建立的Holder不等式。日报》。此外,对于我们的结果,经典的Holder不等式作为一个特例被推导出来。2010年MSC。26d15, 26a33, 60e15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New integral results on Holder type inequalities
In this paper, using fractional integration, we present new fractional integral inequalities related to Holder inequality. We generalise a Wu’s sharpness of Holder inequality for p, q integration. Then, as an application, we propose another way to derive the Holder inequality which is already established by Z. Dahmani on 2012 in General Math. Journal. Also, for our results, the classical Holder inequality is deduced as a special case. MSC 2010. 26D15, 26A33, 60E15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信