{"title":"Secant变种与不变量的度","authors":"V. Tsanov","doi":"10.7546/jgsp-51-2019-73-85","DOIUrl":null,"url":null,"abstract":"The ring of invariant polynomials ${\\mathbb C}[V]^G$ over a given finite dimensional representation space $V$ of a complex reductive group $G$ is known, by a famous theorem of Hilbert, to be finitely generated. The general proof being nonconstructive, the generators and their degrees have remained a subject of interest. In this article we determine certain divisors of the degrees of the generators. Also, for irreducible representations, we provide lower bounds for the degrees, determined by the geometric properties of the unique closed projective $G$-orbit $\\mathbb X$, and more specifically its secant varieties. For a particular class of representations, where the secant varieties are especially well behaved, we exhibit an exact correspondence between the generating invariants and the secant varieties intersecting the semistable locus.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Secant Varieties and Degrees of Invariants\",\"authors\":\"V. Tsanov\",\"doi\":\"10.7546/jgsp-51-2019-73-85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ring of invariant polynomials ${\\\\mathbb C}[V]^G$ over a given finite dimensional representation space $V$ of a complex reductive group $G$ is known, by a famous theorem of Hilbert, to be finitely generated. The general proof being nonconstructive, the generators and their degrees have remained a subject of interest. In this article we determine certain divisors of the degrees of the generators. Also, for irreducible representations, we provide lower bounds for the degrees, determined by the geometric properties of the unique closed projective $G$-orbit $\\\\mathbb X$, and more specifically its secant varieties. For a particular class of representations, where the secant varieties are especially well behaved, we exhibit an exact correspondence between the generating invariants and the secant varieties intersecting the semistable locus.\",\"PeriodicalId\":43078,\"journal\":{\"name\":\"Journal of Geometry and Symmetry in Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Symmetry in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-51-2019-73-85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-51-2019-73-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
The ring of invariant polynomials ${\mathbb C}[V]^G$ over a given finite dimensional representation space $V$ of a complex reductive group $G$ is known, by a famous theorem of Hilbert, to be finitely generated. The general proof being nonconstructive, the generators and their degrees have remained a subject of interest. In this article we determine certain divisors of the degrees of the generators. Also, for irreducible representations, we provide lower bounds for the degrees, determined by the geometric properties of the unique closed projective $G$-orbit $\mathbb X$, and more specifically its secant varieties. For a particular class of representations, where the secant varieties are especially well behaved, we exhibit an exact correspondence between the generating invariants and the secant varieties intersecting the semistable locus.
期刊介绍:
The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.