非平面曲面上的存在图

Q4 Mathematics
Arnold Oostra
{"title":"非平面曲面上的存在图","authors":"Arnold Oostra","doi":"10.15446/RECOLMA.V53N2.85539","DOIUrl":null,"url":null,"abstract":"Existential graphs on the plane constitute a two-dimensional representation of classical logic, in which a Jordan curve stands for the negation of its inside. In this paper we propose a program to develop existential Alpha graphs, which correspond to propositional logic, on various surfaces. The geometry of each manifold determines the possible Jordan curves on it, leading to diverse interpretations of negation. This may open a way for appointing a \"natural\" logic to any surface.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existential Graphs on nonplanar surfaces\",\"authors\":\"Arnold Oostra\",\"doi\":\"10.15446/RECOLMA.V53N2.85539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existential graphs on the plane constitute a two-dimensional representation of classical logic, in which a Jordan curve stands for the negation of its inside. In this paper we propose a program to develop existential Alpha graphs, which correspond to propositional logic, on various surfaces. The geometry of each manifold determines the possible Jordan curves on it, leading to diverse interpretations of negation. This may open a way for appointing a \\\"natural\\\" logic to any surface.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RECOLMA.V53N2.85539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RECOLMA.V53N2.85539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

平面上的存在图构成了经典逻辑的二维表示,其中Jordan曲线代表对其内部的否定。在本文中,我们提出了一个程序来开发存在阿尔法图,它对应于命题逻辑,在各种表面上。每个流形的几何形状决定了其上可能的Jordan曲线,从而导致对否定的不同解释。这可能为在任何表面上指定“自然”逻辑开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existential Graphs on nonplanar surfaces
Existential graphs on the plane constitute a two-dimensional representation of classical logic, in which a Jordan curve stands for the negation of its inside. In this paper we propose a program to develop existential Alpha graphs, which correspond to propositional logic, on various surfaces. The geometry of each manifold determines the possible Jordan curves on it, leading to diverse interpretations of negation. This may open a way for appointing a "natural" logic to any surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信