{"title":"基于WorldView-3多光谱卫星图像的热带亚热带原始森林冠层间隙机器学习方法研究","authors":"Colbert M. Jackson, E. Adam","doi":"10.1017/S0376892922000339","DOIUrl":null,"url":null,"abstract":"Summary Selective logging in tropical forests may lead to deforestation and forest degradation, so accurate mapping of it will assist in forest restoration, among other ecological applications. This study aimed to track canopy tree loss due to illegal logging of the important hardwood tree Ocotea usambarensis in a closed-canopy submontane tropical forest by evaluating the mapping potential of the very-high-resolution WorldView-3 multispectral dataset using random forest (RF) and support vector machine (SVM) with radial basis function kernel classifiers. The results show average overall accuracies of 92.3 ± 2.6% and 94.0 ± 2.1% for the RF and SVM models, respectively. Average kappa coefficients were 0.88 ± 0.03 for RF and 0.90 ± 0.02 for SVM. The user’s and producer’s accuracies for both classifiers were in the range of 84–100%. This study further indicates that vegetation indices derived from bands 5 and 6 helped detect canopy gaps in the study area. Both variable importance measurement in the RF algorithm and pairwise feature selection proved useful in identifying the most pertinent variables in the classification of canopy gaps. These findings could allow forest managers to improve methods of detecting canopy gaps at larger scales using remote sensing data and relatively little additional fieldwork.","PeriodicalId":50517,"journal":{"name":"Environmental Conservation","volume":"49 1","pages":"255 - 262"},"PeriodicalIF":2.2000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A machine learning approach to mapping canopy gaps in an indigenous tropical submontane forest using WorldView-3 multispectral satellite imagery\",\"authors\":\"Colbert M. Jackson, E. Adam\",\"doi\":\"10.1017/S0376892922000339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Selective logging in tropical forests may lead to deforestation and forest degradation, so accurate mapping of it will assist in forest restoration, among other ecological applications. This study aimed to track canopy tree loss due to illegal logging of the important hardwood tree Ocotea usambarensis in a closed-canopy submontane tropical forest by evaluating the mapping potential of the very-high-resolution WorldView-3 multispectral dataset using random forest (RF) and support vector machine (SVM) with radial basis function kernel classifiers. The results show average overall accuracies of 92.3 ± 2.6% and 94.0 ± 2.1% for the RF and SVM models, respectively. Average kappa coefficients were 0.88 ± 0.03 for RF and 0.90 ± 0.02 for SVM. The user’s and producer’s accuracies for both classifiers were in the range of 84–100%. This study further indicates that vegetation indices derived from bands 5 and 6 helped detect canopy gaps in the study area. Both variable importance measurement in the RF algorithm and pairwise feature selection proved useful in identifying the most pertinent variables in the classification of canopy gaps. These findings could allow forest managers to improve methods of detecting canopy gaps at larger scales using remote sensing data and relatively little additional fieldwork.\",\"PeriodicalId\":50517,\"journal\":{\"name\":\"Environmental Conservation\",\"volume\":\"49 1\",\"pages\":\"255 - 262\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1017/S0376892922000339\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/S0376892922000339","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
A machine learning approach to mapping canopy gaps in an indigenous tropical submontane forest using WorldView-3 multispectral satellite imagery
Summary Selective logging in tropical forests may lead to deforestation and forest degradation, so accurate mapping of it will assist in forest restoration, among other ecological applications. This study aimed to track canopy tree loss due to illegal logging of the important hardwood tree Ocotea usambarensis in a closed-canopy submontane tropical forest by evaluating the mapping potential of the very-high-resolution WorldView-3 multispectral dataset using random forest (RF) and support vector machine (SVM) with radial basis function kernel classifiers. The results show average overall accuracies of 92.3 ± 2.6% and 94.0 ± 2.1% for the RF and SVM models, respectively. Average kappa coefficients were 0.88 ± 0.03 for RF and 0.90 ± 0.02 for SVM. The user’s and producer’s accuracies for both classifiers were in the range of 84–100%. This study further indicates that vegetation indices derived from bands 5 and 6 helped detect canopy gaps in the study area. Both variable importance measurement in the RF algorithm and pairwise feature selection proved useful in identifying the most pertinent variables in the classification of canopy gaps. These findings could allow forest managers to improve methods of detecting canopy gaps at larger scales using remote sensing data and relatively little additional fieldwork.
期刊介绍:
Environmental Conservation is one of the longest-standing, most highly-cited of the interdisciplinary environmental science journals. It includes research papers, reports, comments, subject reviews, and book reviews addressing environmental policy, practice, and natural and social science of environmental concern at the global level, informed by rigorous local level case studies. The journal"s scope is very broad, including issues in human institutions, ecosystem change, resource utilisation, terrestrial biomes, aquatic systems, and coastal and land use management. Environmental Conservation is essential reading for all environmentalists, managers, consultants, agency workers and scientists wishing to keep abreast of current developments in environmental science.