{"title":"使用度量学习、学习率调度器和增强改进人脸识别模型","authors":"Andrey Litvynchuk, L. Baranovska","doi":"10.34229/1028-0979-2021-6-9","DOIUrl":null,"url":null,"abstract":"Face recognition is one of the main tasks of computer vision, which is relevant due to its practical significance and great interest of wide range of scientists. It has many applications, which has led to a huge amount of research in this area. And although research in the field has been going on since the beginning of the computer vision, good results could be achieved only with the help of convolutional neural networks. In this work, a comparative analysis of facial recognition methods before convolutional neural networks was performed. A metric learning approach, augmentations and learning rate schedulers are considered. There were performed bunch of experiments and comparative analysis of the considered methods of improvement of convolutional neural networks. As a result a universal algorithm for training the face recognition model was obtained. In this work, we used SE-ResNet50 as the only neural network for experiments. Metric learning is a method by which it is possible to achieve good accuracy in face recognition. Overfitting is a big problem of neural networks, in particular because they have too many parameters and usually not enough data to guarantee the generalization of the model. Additional data labeling can be time-consuming and expensive, so there is such an approach as augmentation. Augmentations artificially increase the training dataset, so as expected, this method improved the results relative to the original experiment in all experiments. Different degrees and more aggressive forms of augmentation in this work led to better results. As expected, the best learning rate scheduler was cosine scheduler with warm-ups and restarts. This schedule has few parameters, so it is also easy to use. In general, using different approaches, we were able to obtain an accuracy of 93,5 %, which is 22 % better than the baseline experiment. In the following studies, it is planned to consider improving not only the model of facial recognition, but also detection. The accuracy of face detection directly depends on the quality of face recognition.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPROVING FACE RECOGNITION MODELS USING METRIC LEARNING, LEARNING RATE SCHEDULERS, AND AUGMENTATIONS\",\"authors\":\"Andrey Litvynchuk, L. Baranovska\",\"doi\":\"10.34229/1028-0979-2021-6-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition is one of the main tasks of computer vision, which is relevant due to its practical significance and great interest of wide range of scientists. It has many applications, which has led to a huge amount of research in this area. And although research in the field has been going on since the beginning of the computer vision, good results could be achieved only with the help of convolutional neural networks. In this work, a comparative analysis of facial recognition methods before convolutional neural networks was performed. A metric learning approach, augmentations and learning rate schedulers are considered. There were performed bunch of experiments and comparative analysis of the considered methods of improvement of convolutional neural networks. As a result a universal algorithm for training the face recognition model was obtained. In this work, we used SE-ResNet50 as the only neural network for experiments. Metric learning is a method by which it is possible to achieve good accuracy in face recognition. Overfitting is a big problem of neural networks, in particular because they have too many parameters and usually not enough data to guarantee the generalization of the model. Additional data labeling can be time-consuming and expensive, so there is such an approach as augmentation. Augmentations artificially increase the training dataset, so as expected, this method improved the results relative to the original experiment in all experiments. Different degrees and more aggressive forms of augmentation in this work led to better results. As expected, the best learning rate scheduler was cosine scheduler with warm-ups and restarts. This schedule has few parameters, so it is also easy to use. In general, using different approaches, we were able to obtain an accuracy of 93,5 %, which is 22 % better than the baseline experiment. In the following studies, it is planned to consider improving not only the model of facial recognition, but also detection. The accuracy of face detection directly depends on the quality of face recognition.\",\"PeriodicalId\":54874,\"journal\":{\"name\":\"Journal of Automation and Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34229/1028-0979-2021-6-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-6-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
IMPROVING FACE RECOGNITION MODELS USING METRIC LEARNING, LEARNING RATE SCHEDULERS, AND AUGMENTATIONS
Face recognition is one of the main tasks of computer vision, which is relevant due to its practical significance and great interest of wide range of scientists. It has many applications, which has led to a huge amount of research in this area. And although research in the field has been going on since the beginning of the computer vision, good results could be achieved only with the help of convolutional neural networks. In this work, a comparative analysis of facial recognition methods before convolutional neural networks was performed. A metric learning approach, augmentations and learning rate schedulers are considered. There were performed bunch of experiments and comparative analysis of the considered methods of improvement of convolutional neural networks. As a result a universal algorithm for training the face recognition model was obtained. In this work, we used SE-ResNet50 as the only neural network for experiments. Metric learning is a method by which it is possible to achieve good accuracy in face recognition. Overfitting is a big problem of neural networks, in particular because they have too many parameters and usually not enough data to guarantee the generalization of the model. Additional data labeling can be time-consuming and expensive, so there is such an approach as augmentation. Augmentations artificially increase the training dataset, so as expected, this method improved the results relative to the original experiment in all experiments. Different degrees and more aggressive forms of augmentation in this work led to better results. As expected, the best learning rate scheduler was cosine scheduler with warm-ups and restarts. This schedule has few parameters, so it is also easy to use. In general, using different approaches, we were able to obtain an accuracy of 93,5 %, which is 22 % better than the baseline experiment. In the following studies, it is planned to consider improving not only the model of facial recognition, but also detection. The accuracy of face detection directly depends on the quality of face recognition.
期刊介绍:
This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.