三维跨Sasakian流形与孤子

Q2 Mathematics
S. Chaubey, U. De
{"title":"三维跨Sasakian流形与孤子","authors":"S. Chaubey, U. De","doi":"10.1108/AJMS-12-2020-0127","DOIUrl":null,"url":null,"abstract":"PurposeThe authors set the goal to find the solution of the Eisenhart problem within the framework of three-dimensional trans-Sasakian manifolds. Also, they prove some results of the Ricci solitons, η-Ricci solitons and three-dimensional weakly  symmetric trans-Sasakian manifolds. Finally, they give a nontrivial example of three-dimensional proper trans-Sasakian manifold.Design/methodology/approachThe authors have used the tensorial approach to achieve the goal.FindingsA second-order parallel symmetric tensor on a three-dimensional trans-Sasakian manifold is a constant multiple of the associated Riemannian metric g.Originality/valueThe authors declare that the manuscript is original and it has not been submitted to any other journal for possible publication.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional trans-Sasakian manifolds and solitons\",\"authors\":\"S. Chaubey, U. De\",\"doi\":\"10.1108/AJMS-12-2020-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe authors set the goal to find the solution of the Eisenhart problem within the framework of three-dimensional trans-Sasakian manifolds. Also, they prove some results of the Ricci solitons, η-Ricci solitons and three-dimensional weakly  symmetric trans-Sasakian manifolds. Finally, they give a nontrivial example of three-dimensional proper trans-Sasakian manifold.Design/methodology/approachThe authors have used the tensorial approach to achieve the goal.FindingsA second-order parallel symmetric tensor on a three-dimensional trans-Sasakian manifold is a constant multiple of the associated Riemannian metric g.Originality/valueThe authors declare that the manuscript is original and it has not been submitted to any other journal for possible publication.\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/AJMS-12-2020-0127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/AJMS-12-2020-0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的在三维跨sasakian流形的框架内寻找Eisenhart问题的解。同时证明了Ricci孤子、η-Ricci孤子和三维弱对称反sasakian流形的一些结果。最后,他们给出了一个非平凡的三维正则跨sasakian流形的例子。设计/方法/方法作者使用张量方法来实现目标。发现三维反sasaki流形上的二阶平行对称张量是相关黎曼度量g的常数倍。原创性/价值作者声明该手稿是原创的,并且没有提交给任何其他可能发表的期刊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional trans-Sasakian manifolds and solitons
PurposeThe authors set the goal to find the solution of the Eisenhart problem within the framework of three-dimensional trans-Sasakian manifolds. Also, they prove some results of the Ricci solitons, η-Ricci solitons and three-dimensional weakly  symmetric trans-Sasakian manifolds. Finally, they give a nontrivial example of three-dimensional proper trans-Sasakian manifold.Design/methodology/approachThe authors have used the tensorial approach to achieve the goal.FindingsA second-order parallel symmetric tensor on a three-dimensional trans-Sasakian manifold is a constant multiple of the associated Riemannian metric g.Originality/valueThe authors declare that the manuscript is original and it has not been submitted to any other journal for possible publication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信