{"title":"基于火用、经济和环境标准的有机朗肯循环集成蒸汽压缩制冷系统的火用性能和投资回收期优化","authors":"Ashwni Goyal, A. F. Sherwani","doi":"10.18186/thermal.1297571","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-objective optimization study is carried out to determine the optimal exergetic performance (𝜂𝑒𝑥) and the payback period (PB) of the organic Rankine cycle (ORC) integrated vapor compression refrigeration (VCR) system based on exergy, economic, and environmental criteria using non-dominated sort genetic algorithm-II (NSGA-II). Moreover, a sensitivity analysis is carried out to improve the exergetic performance of the system. The working fluid, the pinch-point temperature difference of the ORC evaporator (ΔToep ), con-denser (ΔTpcond), and the VCR evaporator (ΔTpve), cooling water inlet temperature (Tcw1), chilled fluid temperature (Tcf2), and heat-source inlet temperature (Th1) are taken as the decision vari-ables. The results of this study indicate that butane is the most suitable working fluid for op-timal exergetic efficiency, 𝜂𝑒𝑥 (33.7%) and payback period, PB (4.9 years) of the system. The optimal values of other decision variables such as Th1, Tcw1, Tcf2, ΔToep , ΔTpve , and ΔTpcondare 378 K, 313 K, 276 K, 10 K, 5 K, and 5 K respectively.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of exergetic performance and payback period of organic rankine cycle integrated vapor compression refrigeration system based on exergy, economic, and environmental criteria\",\"authors\":\"Ashwni Goyal, A. F. Sherwani\",\"doi\":\"10.18186/thermal.1297571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-objective optimization study is carried out to determine the optimal exergetic performance (𝜂𝑒𝑥) and the payback period (PB) of the organic Rankine cycle (ORC) integrated vapor compression refrigeration (VCR) system based on exergy, economic, and environmental criteria using non-dominated sort genetic algorithm-II (NSGA-II). Moreover, a sensitivity analysis is carried out to improve the exergetic performance of the system. The working fluid, the pinch-point temperature difference of the ORC evaporator (ΔToep ), con-denser (ΔTpcond), and the VCR evaporator (ΔTpve), cooling water inlet temperature (Tcw1), chilled fluid temperature (Tcf2), and heat-source inlet temperature (Th1) are taken as the decision vari-ables. The results of this study indicate that butane is the most suitable working fluid for op-timal exergetic efficiency, 𝜂𝑒𝑥 (33.7%) and payback period, PB (4.9 years) of the system. The optimal values of other decision variables such as Th1, Tcw1, Tcf2, ΔToep , ΔTpve , and ΔTpcondare 378 K, 313 K, 276 K, 10 K, 5 K, and 5 K respectively.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1297571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1297571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Optimization of exergetic performance and payback period of organic rankine cycle integrated vapor compression refrigeration system based on exergy, economic, and environmental criteria
In this paper, a multi-objective optimization study is carried out to determine the optimal exergetic performance (𝜂𝑒𝑥) and the payback period (PB) of the organic Rankine cycle (ORC) integrated vapor compression refrigeration (VCR) system based on exergy, economic, and environmental criteria using non-dominated sort genetic algorithm-II (NSGA-II). Moreover, a sensitivity analysis is carried out to improve the exergetic performance of the system. The working fluid, the pinch-point temperature difference of the ORC evaporator (ΔToep ), con-denser (ΔTpcond), and the VCR evaporator (ΔTpve), cooling water inlet temperature (Tcw1), chilled fluid temperature (Tcf2), and heat-source inlet temperature (Th1) are taken as the decision vari-ables. The results of this study indicate that butane is the most suitable working fluid for op-timal exergetic efficiency, 𝜂𝑒𝑥 (33.7%) and payback period, PB (4.9 years) of the system. The optimal values of other decision variables such as Th1, Tcw1, Tcf2, ΔToep , ΔTpve , and ΔTpcondare 378 K, 313 K, 276 K, 10 K, 5 K, and 5 K respectively.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.