{"title":"交换环上模的湮灭图","authors":"F. Saraei","doi":"10.22124/JART.2021.18226.1241","DOIUrl":null,"url":null,"abstract":"Let $M$ be a module over a commutative ring $R$, $Z_{*}(M)$ be its set of weak zero-divisor elements, andif $min M$, then let $I_m=(Rm:_R M)={rin R : rMsubseteq Rm}$. The annihilator graph of $M$ is the (undirected) graph$AG(M)$ with vertices $tilde{Z_{*}}(M)=Z_{*}(M)setminus {0}$, and two distinct vertices $m$ and $n$ are adjacent if andonly if $(0:_R I_{m}I_{n}M)neq (0:_R m)cup (0:_R n)$. We show that $AG(M)$ is connected with diameter at most two and girth at mostfour. Also, we study some properties of the zero-divisor graph of reduced multiplication-like $R$-modules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"93-108"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The annihilator graph of modules over commutative rings\",\"authors\":\"F. Saraei\",\"doi\":\"10.22124/JART.2021.18226.1241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a module over a commutative ring $R$, $Z_{*}(M)$ be its set of weak zero-divisor elements, andif $min M$, then let $I_m=(Rm:_R M)={rin R : rMsubseteq Rm}$. The annihilator graph of $M$ is the (undirected) graph$AG(M)$ with vertices $tilde{Z_{*}}(M)=Z_{*}(M)setminus {0}$, and two distinct vertices $m$ and $n$ are adjacent if andonly if $(0:_R I_{m}I_{n}M)neq (0:_R m)cup (0:_R n)$. We show that $AG(M)$ is connected with diameter at most two and girth at mostfour. Also, we study some properties of the zero-divisor graph of reduced multiplication-like $R$-modules.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"9 1\",\"pages\":\"93-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2021.18226.1241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.18226.1241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
设$M$是交换环$R$上的一个模,$Z_{*}(M)$是交换环$R$上的弱零因子元素集,如果$min M$,则设$I_m=(Rm:_R M)={rin R: rMsubseteq Rm}$。$M$的湮灭子图是顶点$ tide {Z_{*}}(M)=Z_{*}(M) set-{0}$的(无向)图$AG(M)$,且两个不同的顶点$M$和$n$相邻当且仅当$(0:_R I_{M}I_{n}M)neq (0:_R M) cup (0:_R n)$。我们证明了$AG(M)$与直径最多为2,周长最多为4。此外,我们还研究了类R模的约简乘法的零因子图的一些性质。
The annihilator graph of modules over commutative rings
Let $M$ be a module over a commutative ring $R$, $Z_{*}(M)$ be its set of weak zero-divisor elements, andif $min M$, then let $I_m=(Rm:_R M)={rin R : rMsubseteq Rm}$. The annihilator graph of $M$ is the (undirected) graph$AG(M)$ with vertices $tilde{Z_{*}}(M)=Z_{*}(M)setminus {0}$, and two distinct vertices $m$ and $n$ are adjacent if andonly if $(0:_R I_{m}I_{n}M)neq (0:_R m)cup (0:_R n)$. We show that $AG(M)$ is connected with diameter at most two and girth at mostfour. Also, we study some properties of the zero-divisor graph of reduced multiplication-like $R$-modules.