Rodrigo Hern'andez-Guti'errez, Ver'onica Mart'inez-de-la-Vega, Jorge M. Mart'inez-Montejano, Jorge E. Vega
{"title":"石墨和枝晶非切割亚连续的超空间","authors":"Rodrigo Hern'andez-Guti'errez, Ver'onica Mart'inez-de-la-Vega, Jorge M. Mart'inez-Montejano, Jorge E. Vega","doi":"10.4064/cm8947-9-2022","DOIUrl":null,"url":null,"abstract":"Given a continuum $X$, let $C(X)$ denote the hyperspace of all subcontinua of $X$. In this paper we study the Vietoris hyperspace $NC^{*}(X)=\\{ A \\in C(X):X\\setminus A\\text{ is connected}\\}$ when $X$ is a finite graph or a dendrite; in particular, we give conditions under which $NC^{*}(X)$ is compact, connected, locally connected or totally disconnected. Also, we prove that if $X$ is a dendrite and the set of endpoints of $X$ is dense, then $NC^{*}(X)$ is homeomorphic to the Baire space of irrational numbers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hyperspace of noncut subcontinua of graphs\\nand dendrites\",\"authors\":\"Rodrigo Hern'andez-Guti'errez, Ver'onica Mart'inez-de-la-Vega, Jorge M. Mart'inez-Montejano, Jorge E. Vega\",\"doi\":\"10.4064/cm8947-9-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a continuum $X$, let $C(X)$ denote the hyperspace of all subcontinua of $X$. In this paper we study the Vietoris hyperspace $NC^{*}(X)=\\\\{ A \\\\in C(X):X\\\\setminus A\\\\text{ is connected}\\\\}$ when $X$ is a finite graph or a dendrite; in particular, we give conditions under which $NC^{*}(X)$ is compact, connected, locally connected or totally disconnected. Also, we prove that if $X$ is a dendrite and the set of endpoints of $X$ is dense, then $NC^{*}(X)$ is homeomorphic to the Baire space of irrational numbers.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8947-9-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8947-9-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The hyperspace of noncut subcontinua of graphs
and dendrites
Given a continuum $X$, let $C(X)$ denote the hyperspace of all subcontinua of $X$. In this paper we study the Vietoris hyperspace $NC^{*}(X)=\{ A \in C(X):X\setminus A\text{ is connected}\}$ when $X$ is a finite graph or a dendrite; in particular, we give conditions under which $NC^{*}(X)$ is compact, connected, locally connected or totally disconnected. Also, we prove that if $X$ is a dendrite and the set of endpoints of $X$ is dense, then $NC^{*}(X)$ is homeomorphic to the Baire space of irrational numbers.