{"title":"基于有限混合模型的阶段型循环时间时变应力强度可靠性模型","authors":"M. Drisya, Joby K. Jose, K. Krishnendu","doi":"10.1080/01966324.2021.1933661","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the estimation of the stress-strength reliability of time-dependent models. Suppose that a system is allowed to run continuously and is subjected to random stress at random time points. Then we can assume a decrease in the strength of the system during the completion of each run. Let the strength of the system decreases by a constant and the stress on the system increases by a constant over each run. Time taken for completion of a run is assumed to have continuous phase-type distribution, the initial strength of the system, as well as, initial stress on the system are assumed to have a finite mixture of either Weibull distributions or power transformed half logistic distributions. A detailed numerical illustration of the results is also carried out.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"128 - 147"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1933661","citationCount":"1","resultStr":"{\"title\":\"Time-Dependent Stress-Strength Reliability Model with Phase-Type Cycle Time Based on Finite Mixture Models\",\"authors\":\"M. Drisya, Joby K. Jose, K. Krishnendu\",\"doi\":\"10.1080/01966324.2021.1933661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with the estimation of the stress-strength reliability of time-dependent models. Suppose that a system is allowed to run continuously and is subjected to random stress at random time points. Then we can assume a decrease in the strength of the system during the completion of each run. Let the strength of the system decreases by a constant and the stress on the system increases by a constant over each run. Time taken for completion of a run is assumed to have continuous phase-type distribution, the initial strength of the system, as well as, initial stress on the system are assumed to have a finite mixture of either Weibull distributions or power transformed half logistic distributions. A detailed numerical illustration of the results is also carried out.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"41 1\",\"pages\":\"128 - 147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1933661\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1933661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1933661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
Time-Dependent Stress-Strength Reliability Model with Phase-Type Cycle Time Based on Finite Mixture Models
Abstract This paper deals with the estimation of the stress-strength reliability of time-dependent models. Suppose that a system is allowed to run continuously and is subjected to random stress at random time points. Then we can assume a decrease in the strength of the system during the completion of each run. Let the strength of the system decreases by a constant and the stress on the system increases by a constant over each run. Time taken for completion of a run is assumed to have continuous phase-type distribution, the initial strength of the system, as well as, initial stress on the system are assumed to have a finite mixture of either Weibull distributions or power transformed half logistic distributions. A detailed numerical illustration of the results is also carried out.