{"title":"基点自由阈值和阿贝尔三倍的高协同性","authors":"Atsushi Ito","doi":"10.14231/ag-2022-023","DOIUrl":null,"url":null,"abstract":"For a polarized abelian variety, Z. Jiang and G. Pareschi introduce an invariant and show that the polarization is basepoint free or projectively normal if the invariant is small. Their result is generalized to higher syzygies by F. Caucci, that is, the polarization satisfies property $(N_p)$ if the invariant is small. In this paper, we study a relation between the invariant and degrees of abelian subvarieties with respect to the polarization. For abelian threefolds, we give an upper bound of the invariant using degrees of abelian subvarieties. In particular, we affirmatively answer a question about $(N_p)$ on abelian varieties asked by the author and V. Lozovanu in the three dimensional case.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Basepoint-freeness thresholds and higher syzygies of abelian threefolds\",\"authors\":\"Atsushi Ito\",\"doi\":\"10.14231/ag-2022-023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a polarized abelian variety, Z. Jiang and G. Pareschi introduce an invariant and show that the polarization is basepoint free or projectively normal if the invariant is small. Their result is generalized to higher syzygies by F. Caucci, that is, the polarization satisfies property $(N_p)$ if the invariant is small. In this paper, we study a relation between the invariant and degrees of abelian subvarieties with respect to the polarization. For abelian threefolds, we give an upper bound of the invariant using degrees of abelian subvarieties. In particular, we affirmatively answer a question about $(N_p)$ on abelian varieties asked by the author and V. Lozovanu in the three dimensional case.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-023\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-023","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Basepoint-freeness thresholds and higher syzygies of abelian threefolds
For a polarized abelian variety, Z. Jiang and G. Pareschi introduce an invariant and show that the polarization is basepoint free or projectively normal if the invariant is small. Their result is generalized to higher syzygies by F. Caucci, that is, the polarization satisfies property $(N_p)$ if the invariant is small. In this paper, we study a relation between the invariant and degrees of abelian subvarieties with respect to the polarization. For abelian threefolds, we give an upper bound of the invariant using degrees of abelian subvarieties. In particular, we affirmatively answer a question about $(N_p)$ on abelian varieties asked by the author and V. Lozovanu in the three dimensional case.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.