基点自由阈值和阿贝尔三倍的高协同性

IF 1.2 1区 数学 Q1 MATHEMATICS
Atsushi Ito
{"title":"基点自由阈值和阿贝尔三倍的高协同性","authors":"Atsushi Ito","doi":"10.14231/ag-2022-023","DOIUrl":null,"url":null,"abstract":"For a polarized abelian variety, Z. Jiang and G. Pareschi introduce an invariant and show that the polarization is basepoint free or projectively normal if the invariant is small. Their result is generalized to higher syzygies by F. Caucci, that is, the polarization satisfies property $(N_p)$ if the invariant is small. In this paper, we study a relation between the invariant and degrees of abelian subvarieties with respect to the polarization. For abelian threefolds, we give an upper bound of the invariant using degrees of abelian subvarieties. In particular, we affirmatively answer a question about $(N_p)$ on abelian varieties asked by the author and V. Lozovanu in the three dimensional case.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Basepoint-freeness thresholds and higher syzygies of abelian threefolds\",\"authors\":\"Atsushi Ito\",\"doi\":\"10.14231/ag-2022-023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a polarized abelian variety, Z. Jiang and G. Pareschi introduce an invariant and show that the polarization is basepoint free or projectively normal if the invariant is small. Their result is generalized to higher syzygies by F. Caucci, that is, the polarization satisfies property $(N_p)$ if the invariant is small. In this paper, we study a relation between the invariant and degrees of abelian subvarieties with respect to the polarization. For abelian threefolds, we give an upper bound of the invariant using degrees of abelian subvarieties. In particular, we affirmatively answer a question about $(N_p)$ on abelian varieties asked by the author and V. Lozovanu in the three dimensional case.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-023\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-023","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

对于极化阿贝尔变种,Z.Jiang和G.Pareschi引入了一个不变量,并证明了如果不变量很小,极化是无基点的或投影正规的。他们的结果被F.Caucci推广到更高的系统,即如果不变量小,则极化满足性质$(N_p)$。在本文中,我们研究了阿贝尔子变种的不变量和度与极化之间的关系。对于阿贝尔三重,我们利用阿贝尔子变种的度给出了不变量的上界。特别地,我们肯定地回答了作者和V.Lozovanu在三维情况下提出的关于阿贝尔变种上的$(N_p)$的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basepoint-freeness thresholds and higher syzygies of abelian threefolds
For a polarized abelian variety, Z. Jiang and G. Pareschi introduce an invariant and show that the polarization is basepoint free or projectively normal if the invariant is small. Their result is generalized to higher syzygies by F. Caucci, that is, the polarization satisfies property $(N_p)$ if the invariant is small. In this paper, we study a relation between the invariant and degrees of abelian subvarieties with respect to the polarization. For abelian threefolds, we give an upper bound of the invariant using degrees of abelian subvarieties. In particular, we affirmatively answer a question about $(N_p)$ on abelian varieties asked by the author and V. Lozovanu in the three dimensional case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信