立方体表面上Brauer-Manin阻塞的持久性

Pub Date : 2021-11-05 DOI:10.4310/mrl.2022.v29.n6.a11
C. Rivera, B. Viray
{"title":"立方体表面上Brauer-Manin阻塞的持久性","authors":"C. Rivera, B. Viray","doi":"10.4310/mrl.2022.v29.n6.a11","DOIUrl":null,"url":null,"abstract":"Let $X$ be a cubic surface over a global field $k$. We prove that a Brauer-Manin obstruction to the existence of $k$-points on $X$ will persist over every extension $L/k$ with degree relatively prime to $3$. In other words, a cubic surface has nonempty Brauer set over $k$ if and only if it has nonempty Brauer set over some extension $L/k$ with $3\\nmid[L:k]$. Therefore, the conjecture of Colliot-Th\\'el\\`ene and Sansuc on the sufficiency of the Brauer-Manin obstruction for cubic surfaces implies that $X$ has a $k$-rational point if and only if $X$ has a $0$-cycle of degree $1$. This latter statement is a special case of a conjecture of Cassels and Swinnerton-Dyer.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Persistence of the Brauer–Manin obstruction on cubic surfaces\",\"authors\":\"C. Rivera, B. Viray\",\"doi\":\"10.4310/mrl.2022.v29.n6.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a cubic surface over a global field $k$. We prove that a Brauer-Manin obstruction to the existence of $k$-points on $X$ will persist over every extension $L/k$ with degree relatively prime to $3$. In other words, a cubic surface has nonempty Brauer set over $k$ if and only if it has nonempty Brauer set over some extension $L/k$ with $3\\\\nmid[L:k]$. Therefore, the conjecture of Colliot-Th\\\\'el\\\\`ene and Sansuc on the sufficiency of the Brauer-Manin obstruction for cubic surfaces implies that $X$ has a $k$-rational point if and only if $X$ has a $0$-cycle of degree $1$. This latter statement is a special case of a conjecture of Cassels and Swinnerton-Dyer.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n6.a11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$X$是全局域$k$上的一个三次曲面。我们证明了对$X$上$k$-点存在的Brauer-Manin阻碍将在每一个扩展$L/k$上持续存在,并且度相对素数为$3$。换句话说,一个三次曲面在$k$上具有非空Brauer集,当且仅当它在具有$3\nmid[L:k]$的某个扩展$L/k$上有非空Brawer集。因此,Colliot-Th’el’ene和Sansuc关于三次曲面Brauer-Manin阻塞的充分性的猜想暗示$X$具有$k$有理点,当且仅当$X$有阶为$1$的$0$循环。后一种说法是卡塞尔和斯温纳顿·戴尔猜想的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Persistence of the Brauer–Manin obstruction on cubic surfaces
Let $X$ be a cubic surface over a global field $k$. We prove that a Brauer-Manin obstruction to the existence of $k$-points on $X$ will persist over every extension $L/k$ with degree relatively prime to $3$. In other words, a cubic surface has nonempty Brauer set over $k$ if and only if it has nonempty Brauer set over some extension $L/k$ with $3\nmid[L:k]$. Therefore, the conjecture of Colliot-Th\'el\`ene and Sansuc on the sufficiency of the Brauer-Manin obstruction for cubic surfaces implies that $X$ has a $k$-rational point if and only if $X$ has a $0$-cycle of degree $1$. This latter statement is a special case of a conjecture of Cassels and Swinnerton-Dyer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信