立方体表面上Brauer-Manin阻塞的持久性

IF 0.6 3区 数学 Q3 MATHEMATICS
C. Rivera, B. Viray
{"title":"立方体表面上Brauer-Manin阻塞的持久性","authors":"C. Rivera, B. Viray","doi":"10.4310/mrl.2022.v29.n6.a11","DOIUrl":null,"url":null,"abstract":"Let $X$ be a cubic surface over a global field $k$. We prove that a Brauer-Manin obstruction to the existence of $k$-points on $X$ will persist over every extension $L/k$ with degree relatively prime to $3$. In other words, a cubic surface has nonempty Brauer set over $k$ if and only if it has nonempty Brauer set over some extension $L/k$ with $3\\nmid[L:k]$. Therefore, the conjecture of Colliot-Th\\'el\\`ene and Sansuc on the sufficiency of the Brauer-Manin obstruction for cubic surfaces implies that $X$ has a $k$-rational point if and only if $X$ has a $0$-cycle of degree $1$. This latter statement is a special case of a conjecture of Cassels and Swinnerton-Dyer.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Persistence of the Brauer–Manin obstruction on cubic surfaces\",\"authors\":\"C. Rivera, B. Viray\",\"doi\":\"10.4310/mrl.2022.v29.n6.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a cubic surface over a global field $k$. We prove that a Brauer-Manin obstruction to the existence of $k$-points on $X$ will persist over every extension $L/k$ with degree relatively prime to $3$. In other words, a cubic surface has nonempty Brauer set over $k$ if and only if it has nonempty Brauer set over some extension $L/k$ with $3\\\\nmid[L:k]$. Therefore, the conjecture of Colliot-Th\\\\'el\\\\`ene and Sansuc on the sufficiency of the Brauer-Manin obstruction for cubic surfaces implies that $X$ has a $k$-rational point if and only if $X$ has a $0$-cycle of degree $1$. This latter statement is a special case of a conjecture of Cassels and Swinnerton-Dyer.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n6.a11\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a11","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设$X$是全局域$k$上的一个三次曲面。我们证明了对$X$上$k$-点存在的Brauer-Manin阻碍将在每一个扩展$L/k$上持续存在,并且度相对素数为$3$。换句话说,一个三次曲面在$k$上具有非空Brauer集,当且仅当它在具有$3\nmid[L:k]$的某个扩展$L/k$上有非空Brawer集。因此,Colliot-Th’el’ene和Sansuc关于三次曲面Brauer-Manin阻塞的充分性的猜想暗示$X$具有$k$有理点,当且仅当$X$有阶为$1$的$0$循环。后一种说法是卡塞尔和斯温纳顿·戴尔猜想的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistence of the Brauer–Manin obstruction on cubic surfaces
Let $X$ be a cubic surface over a global field $k$. We prove that a Brauer-Manin obstruction to the existence of $k$-points on $X$ will persist over every extension $L/k$ with degree relatively prime to $3$. In other words, a cubic surface has nonempty Brauer set over $k$ if and only if it has nonempty Brauer set over some extension $L/k$ with $3\nmid[L:k]$. Therefore, the conjecture of Colliot-Th\'el\`ene and Sansuc on the sufficiency of the Brauer-Manin obstruction for cubic surfaces implies that $X$ has a $k$-rational point if and only if $X$ has a $0$-cycle of degree $1$. This latter statement is a special case of a conjecture of Cassels and Swinnerton-Dyer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信