不平整地形下野外机器人的视频稳定算法

IF 0.8 Q4 ROBOTICS
Abhijeet Ravankar, Arpit Rawankar, Ankit A. Ravankar
{"title":"不平整地形下野外机器人的视频稳定算法","authors":"Abhijeet Ravankar,&nbsp;Arpit Rawankar,&nbsp;Ankit A. Ravankar","doi":"10.1007/s10015-023-00883-x","DOIUrl":null,"url":null,"abstract":"<div><p>Field robots equipped with visual sensors have been used to automate several services. In many scenarios, these robots are tele-operated by a remote operator who controls the robot motion based on a live video feed from the robot’s cameras. In other cases, like surveillance and monitoring applications, the video recorded by the robot is later analyzed or inspected manually. A shaky video is produced on an uneven terrain. It could also be caused due to loose and vibrating mechanical frame on which the camera has been mounted. Jitters or shakes in these videos are undesired for tele-operation, and to maintain desired quality of service. In this paper, we present an algorithm to stabilize the undesired jitters in a shaky video using only the camera information for different areas of vineyard based on terrain profile. The algorithm works by tracking robust feature points in the successive frames of the camera, smoothing the trajectory, and generating desired transformations to output a stabilized video. We have tested the algorithm in actual field robots in uneven terrains used for agriculture, and found the algorithm to produce good results.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"28 3","pages":"502 - 508"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video stabilization algorithm for field robots in uneven terrain\",\"authors\":\"Abhijeet Ravankar,&nbsp;Arpit Rawankar,&nbsp;Ankit A. Ravankar\",\"doi\":\"10.1007/s10015-023-00883-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Field robots equipped with visual sensors have been used to automate several services. In many scenarios, these robots are tele-operated by a remote operator who controls the robot motion based on a live video feed from the robot’s cameras. In other cases, like surveillance and monitoring applications, the video recorded by the robot is later analyzed or inspected manually. A shaky video is produced on an uneven terrain. It could also be caused due to loose and vibrating mechanical frame on which the camera has been mounted. Jitters or shakes in these videos are undesired for tele-operation, and to maintain desired quality of service. In this paper, we present an algorithm to stabilize the undesired jitters in a shaky video using only the camera information for different areas of vineyard based on terrain profile. The algorithm works by tracking robust feature points in the successive frames of the camera, smoothing the trajectory, and generating desired transformations to output a stabilized video. We have tested the algorithm in actual field robots in uneven terrains used for agriculture, and found the algorithm to produce good results.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":\"28 3\",\"pages\":\"502 - 508\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-023-00883-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00883-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

配备有视觉传感器的现场机器人已被用于自动化多项服务。在许多场景中,这些机器人由远程操作员远程操作,远程操作员根据机器人摄像头的实时视频信息控制机器人的运动。在其他情况下,如监控和监控应用程序,机器人记录的视频稍后会被手动分析或检查。一段摇摇欲坠的视频是在崎岖不平的地形上制作的。这也可能是由于安装摄像头的机械框架松动和振动造成的。这些视频中的抖动或抖动对于远程操作和保持所需的服务质量是不希望的。在本文中,我们提出了一种基于地形轮廓的算法,仅使用葡萄园不同区域的摄像机信息来稳定不稳定视频中的不期望抖动。该算法通过跟踪相机连续帧中的鲁棒特征点,平滑轨迹,并生成所需的变换来输出稳定的视频。我们已经在用于农业的不均匀地形的实际田间机器人中测试了该算法,并发现该算法产生了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Video stabilization algorithm for field robots in uneven terrain

Video stabilization algorithm for field robots in uneven terrain

Field robots equipped with visual sensors have been used to automate several services. In many scenarios, these robots are tele-operated by a remote operator who controls the robot motion based on a live video feed from the robot’s cameras. In other cases, like surveillance and monitoring applications, the video recorded by the robot is later analyzed or inspected manually. A shaky video is produced on an uneven terrain. It could also be caused due to loose and vibrating mechanical frame on which the camera has been mounted. Jitters or shakes in these videos are undesired for tele-operation, and to maintain desired quality of service. In this paper, we present an algorithm to stabilize the undesired jitters in a shaky video using only the camera information for different areas of vineyard based on terrain profile. The algorithm works by tracking robust feature points in the successive frames of the camera, smoothing the trajectory, and generating desired transformations to output a stabilized video. We have tested the algorithm in actual field robots in uneven terrains used for agriculture, and found the algorithm to produce good results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信